Răspuns:
y = -19 / 15x-2
Explicaţie:
Pentru a determina funcția liniară pentru această problemă, tot ce trebuie să facem este să folosim formula de intersecție a pantei.
Forma de intersecție a unei pante a unei ecuații liniare este:
Unde
Înlocuirea informațiilor furnizate:
Fie f o funcție liniară astfel încât f (-1) = - 2 și f (1) = 4. Să se găsească o ecuație pentru funcția liniară f și apoi un graf y = f (x) pe grilă de coordonate?
Y = 3x + 1 Deoarece f este o funcție liniară, adică o linie, astfel încât f (-1) = - 2 și f (1) = 4, aceasta înseamnă că trece prin (-1, -2) ) Notați că numai o singură linie poate trece prin orice două puncte și dacă punctele sunt (x_1, y_1) și (x_2, y_2), ecuația este (x-x_1) / (x_2-x_1) = (y-y_1) / (y-2-y_1) și deci ecuația de trecere a liniei (-1, -2) și (1,4) este (x - (- )) / (4 - (- 2)) sau (x + 1) / 2 = (y + 2) / 6 și multiplicarea cu 6 sau 3 (x + 1) = y + 2 sau y =
Care este ecuația în forma pantă-pantă și forma de intersecție a pantei liniei date pe pantă: 3/4, interceptul y: -5?
Forma ecuației liniare este următoarea: Forma ecuației liniare: Înclinarea - interceptul: y = mx + c Punctul - înclinarea: y = y * = m * (x - x_1) Forma standard: ax + de = c Forma generala: ax + / 4) x - 5 Atunci când x = 0, y = -5 Atunci când y = 0, x = 20/3 Forma punct-pantă a ecuației este de culoare (purpuriu) (y + 5 = - (20/3)) #
Ce este interceptul x și interceptul y pentru ecuația liniară y = 4?
Doar interceptul y la: x = 0, y = 4 Ecuația ta reprezintă o linie orizontală care trece prin y = 4 și nu va traversa axa x. Grafic: grafic {0x + 4 [-10, 10, -5, 5]}