Răspuns:
Metalele mai reactive pierd electronii mai ușor și devin ioni în soluție, în timp ce metalele mai puțin reactive acceptă electronii mai ușor în forma lor ionică, devenind solizi.
Explicaţie:
În reacțiile de deplasare, metalul solid este oxidate și ionii metalici în soluție sunt redus. Dacă acești doi termeni sunt noi, oxidarea este pierderea electronilor și reducerea este câștig de electroni. Cei mai mulți oameni își amintesc acest lucru cu ajutorul pneumoniei Oilrig. Oxidarea este reducerea pierderilor - OILRIG
De exemplu, plasarea
Ecuația de ecuație de oxidare:
Ecuația jumătății de reducere:
Metalele mai reactive sunt oxidate mai ușor decât metalele mai puțin reactive. De cand
Întrebarea # a01f9 + Exemplu
Un adjectiv comparativ este gradul unui adjectiv care modifică un substantiv prin comparație cu un alt substantiv. O referință de pronume este relația pe care o are un pronume cu antecedentul său. ADEVĂTORII Gradul de adjectiv este pozitiv, comparativ și superlativ. Un adjectiv pozitiv este forma de bază a adjectivului: - cald - nou - periculos - complet Un adjectiv comparativ este un adjectiv care descrie (modifică) un substantiv în comparație cu ceva similar sau același: - mai fierbinte - mai nou - mai periculos - mai complet Un adjectiv superlativ este un adjectiv care descrie (modifică) un substantiv în compa
Întrebarea # c67a6 + Exemplu
Dacă o ecuație matematică descrie o anumită cantitate fizică ca o funcție a timpului, derivatul acelei ecuații descrie rata de schimbare ca funcție de timp. De exemplu, dacă mișcarea unei mașini poate fi descrisă ca fiind: x = vt Apoi, în orice moment (t) puteți spune care va fi poziția mașinii (x). Derivatul lui x în funcție de timp este: x '= v. Acest v este rata de schimbare a lui x. Acest lucru se aplică și în cazurile în care viteza nu este constantă. Miscarea unui proiectil aruncat direct in sus va fi descrisa de: x = v_0t - 1 / 2g t ^ 2 Derivatul va va da viteza in functie de t. x '= v_0
Întrebarea # 53a2b + Exemplu
Această definiție a distanței este invariantă în schimbarea cadrului inerțial și, prin urmare, are semnificație fizică. Spațiul Minkowski este construit pentru a fi un spațiu 4-dimensional cu coordonatele parametrilor (x_0, x_1, x_2, x_3, x_4), unde de obicei spunem x_0 = ct. În centrul relativității speciale, avem transformările Lorentz, care sunt transformări dintr-un cadru inerțial în altul, care lasă viteza luminii invariabile. Nu voi intra în derivarea completă a transformărilor Lorentz, dacă vreți să explic acest lucru, întrebați-mă și voi intra în mai multe detalii. Ceea ce este importa