Ecuația parabolei: y = ax ^ 2 + bx + c. Găsiți a, b și c.
x axei de simetrie:
Scriind că graficul care trece la punctele (1, 0) și punctul (4, -3):
(1) 0 = a + b + c -> c = - a - b = - a + 6a = 5a
(2) -3 = 16a + 4b + c -> -3 = 16a - 24a + 5a = -3a -> a = 1
b = -6a = -6; și c = 5a = 5
Verificați cu x = 1: -> y = 1 - 6 + 5 = 0. OK
Linia L are ecuația 2x-3y = 5, iar linia M trece prin punctul (2, 10) și este perpendiculară pe linia L. Cum determinați ecuația pentru linia M?
În forma punct-pantă, ecuația liniei M este y-10 = -3 / 2 (x-2). În forma de intersecție înclinată, este y = -3 / 2x + 13. Pentru a găsi panta liniei M, trebuie mai întâi să deducem panta liniei L. Ecuația pentru linia L este 2x-3y = 5. Aceasta este în formă standard, care nu ne spune în mod direct panta lui L. Putem însă rearanja această ecuație, totuși, în forma de intersecție a pantei prin rezolvarea pentru y: 2x-3y = 5 culoare (alb) (2x) -3y = (2x-3) y = (5-2x) / (- 3) "" (împărțim ambele fețe cu -3) culoarea (alb) (2x- 3) y = 2/3 x-5/3 "" (rearanjăm
Linia L are ecuația 2x-3y = 5. Linia M trece prin punctul (3, -10) și este paralelă cu linia L. Cum determinați ecuația pentru linia M?
Vedeți un proces de soluție de mai jos: Linia L este în forma liniară standard. Forma standard a unei ecuații liniare este: culoare (roșu) (A) x + culoare (albastru) (B) y = culoare (verde) (albastru) (B) și culoarea (verde) (C) sunt numere întregi, iar A este ne-negativă și A, B și C nu au alți factori diferiți decât 1 culoare (roșu) (albastru) (3) y = culoare (verde) (5) Înclinația unei ecuații în formă standard este: m = -color (roșu) (3) = 2/3 Deoarece linia M este paralelă cu linia L, linia M va avea aceeași panta. Putem acum folosi formula de panta punct pentru a scrie o ecuatie pentru linia
Întrebarea 2: Linia FG conține punctele F (3, 7) și G (-4, -5). Linia HI conține punctele H (-1, 0) și I (4, 6). Linii FG și HI sunt ...? paralel perpendiculare nici
"nici"> "" folosind următoarele în raport cu pantele liniilor "•" liniile paralele au pante egale "•" produsul liniilor perpendiculare "= -1" calculați pantele m folosind formula "gradient de culoare" (x_1, y_1) = F (3,7) "și" (x_2, y_2) = G (-4, -) 5) m_ (FG) = (- 5-7) / (- 4-3) = (- 12) / (- 7) = 12/7 "let" "și" (x_2, y_2) = I (4,6) m (HI) = (6-0) / (4 - (- 1)) = 6/5 m (FG) linii nu paralele "m_ (FG) xxm_ (HI) = 12 / 7xx6 / 5! = - 1" astfel liniile nu sunt perpendiculare "" liniile nu sunt nici paralele n