Răspuns:
Explicaţie:
Trebuie să facem mai întâi diviziunea. Am de gând să folosesc o diviziune lungă, pentru că prefer să fie sintetic:
………………………..
………………………. _ _
……………………
…………………………………
……………………………..
……………………………………………..
Verifica:
Acum descompunem restul:
Fie x = 3:
Fie x = 5:
Cum scrieți descompunerea fracției parțiale a expresiei raționale x ^ 2 / ((x-1) (x + 2))?
(x + 2)) = 1 / (3 (x-1)) - 4 / (3 (x + 2)) Trebuie să le scriem în funcție de fiecare factor. (x + 1) (x + 2)) = A / (x-1) + B / (x + 2) în x = -2: (-2) ^ 2 = A (-2 + 2) + B (-2-1) 4 = -3B B = -4/3 Punerea în x = 1 + 2) + B (1-1) 1 = 3A A = 1/3 x 2/2 ((x-1) (x + 2) (X + 2)) = 1 / (3 (x-1)) - 4 / (x (x) +2))
Care este cel mai mic numitor comun al expresiei raționale: 5 / x ^ 2 - 3 / (6x ^ 2 + 12x)?
Prima fracțiune este setată, dar cea de-a doua necesită simplificare - pe care am pierdut-o înainte de editare. 3 / (6x ^ 2 + 12x) = 3 / (6x (x + 2)) = 1 / (2x (x + 2) ) obtinerea 2x ^ 2 (x + 2) = 2x ^ 3 + 4x ^ 2. Ce au ceilalti baieti
Cum scrieți descompunerea fracției parțiale a expresiei raționale (3x) / (x ^ 3 - 2x ^ 2 - x + 2)?
(3x) / (x ^ 3-2x ^ 2-x + 2) = 2 / (x-2) -3 / dat fiind expresia în fracțiuni parțiale, ne gândim la factorizarea numitorului. (X-2)) = culoare (albastru) ((x) = 2 (x-2) (a ^ 2-1)) Aplicând identitatea polinomilor: culoare (portocaliu) (a ^ 2-b ^ 2 = (ab) (X-2) (x-1) (x + 2) = culoare (albastru) 1)) Să descompunem expresia rațională prin găsirea culorilor A, B și C (maro) (A / (x-2) + B / (x-1) + C / (x + 1) ) ((3x) / (x ^ 3-2x ^ 2-x + 2)) culoare (maro) culoare (maro) ((A (x-1) (x + 1)) / (x-2) + (B (x-2) (x + 1)) / (x-1) + (C (x- (X-1)) / (x + 1)) = (A (x ^ 2-1)) / (x-2) (X + 2) + / (x + 2) + / (x + 2) -2)