Răspuns:
Iată o abordare …
Explicaţie:
Sa vedem…
Un element liniar este în formă
Putem găsi concavitatea unei funcții prin găsirea derivatului său dublu (
Să o facem atunci!
Deci, acest lucru ne spune că funcțiile liniare trebuie să curbează la fiecare punct dat.
Știind că graficul funcțiilor liniare este o linie dreaptă, acest lucru nu are sens, nu-i așa?
Prin urmare, nu există nici un punct de concavitate pe graficele funcțiilor liniare.
Primul și al doilea termen al unei secvențe geometrice sunt respectiv primul și al treilea termen al unei secvențe liniare. Al patrulea termen al secvenței liniare este de 10, iar suma primelor cinci termeni este 60. Găsiți primii cinci termeni ai secvenței liniare?
O secvență geometrică tipică poate fi reprezentată ca c_0a, c_0a ^ 2, cdots, c_0a ^ k și o secvență aritmetică tipică ca c_0a, c_0a + Delta, c_0a + 2Delta, cdot, c_0a + kDelta Apelarea c_0 a ca primul element al secvenței geometrice pe care o avem {(c_0 a ^ 2 = c_0a + 2Delta -> "Primul și al doilea din GS sunt primul și al treilea dintr-un LS"), (c_0a + 3Delta = > "Al patrulea termen al secvenței liniare este 10"), (5c_0a + 10Delta = 60 -> "Suma primilor cinci termeni este de 60"):} Rezolvarea pentru c_0, a Delta obținem c_0 = 64/3 , a = 3/4, Delta = -2 și primele cinci elemente pentr
Fie f (x) = x-1. 1) Verificați dacă f (x) nu este nici oarecum ciudat. 2) Se poate scrie f (x) ca suma unei funcții uniforme și a unei funcții ciudate? a) Dacă da, expune o soluție. Există mai multe soluții? b) Dacă nu, dovedește că este imposibil.
Fie f (x) = | x -1 |. Dacă f este egal, atunci f (-x) ar fi egal cu f (x) pentru toate x. Dacă f sunt ciudate, atunci f (-x) ar fi egal -f (x) pentru toate x. Observați că pentru x = 1 f (1) = | 0 | = 0 f (-1) = -2 | = 2 Deoarece 0 nu este egal cu 2 sau -2, f nu este nici chiar nici ciudat. Poate fi scris ca g (x) + h (x), unde g este egal și h este impar? Dacă aceasta ar fi adevărată atunci g (x) + h (x) = | x - 1 |. Apelați această afirmație 1. Înlocuiți x cu -x. g (-x) + h (-x) = | -x - 1 | Deoarece g este egal și h este ciudat, avem: g (x) - h (x) = | -x - 1 | Apelați această afirmație 2. Introducem instrucțiunile
Care este domeniul și domeniul unei funcții liniare?
Domeniul și gama unei funcții liniare sunt ambele (-infty, infty). Sper că acest lucru a fost de ajutor.