Răspuns:
Explicaţie:
Observați că de la cea de-a doua identitate pitagoriană
Aceasta înseamnă că fracțiunea este egală cu 1 și asta ne lasă integrarea destul de simplă
Răspuns:
Explicaţie:
În mod interesant, putem observa, de asemenea, că aceasta se potrivește formei integrală arctangentă, și anume:
# Int1 / (1 + u ^ 2) du = arctan (u) #
Aici, dacă
# Intsec ^ 2x / (1 + tan ^ 2x) dx = int1 / (1 + u ^ 2) du = arctan (u) = arctan (tanx) = x #
Adăugarea limitelor:
# Int_0 ^ (pi / 4) sec ^ 2x / (1 + tan ^ 2x) dx = x _0 ^ (pi / 4) = pi / 4-0 = pi / 4 #
Cum evaluați integritatea int (cosx) / (sin ^ (2) x) dx?
Introsx / sin ^ 2xdx = -cscx Fie u = sinx, atunci du = cosxdx și intcosx / sin ^ 2xdx = int (du) / u ^ 2 = -1 / u = -1 / sinx =
Cum evaluați integritatea definită int ((sqrtx + 1) / (4sqrtx)) ^ 2 dx din [3,9]?
Int_3 ^ 9 ((sqrtx + 1) / (4sqrtx)) ^ 2 * dx = 9/8-sqrt3 / 4 + 1/16 * ln 3 = 0.7606505661495 Din dat, int_3 ^ 9 ((sqrtx + 4sqrtx)) ^ 2 * dx Începem prin simplificarea mai întâi a integrand int_3 ^ 9 ((sqrtx + 1) / (4sqrtx)) ^ 2 * dx int_3 ^ 9 ((sqrtx) / (4sqrtx) + 1 / (1 + 1 / (sqrtx)) ^ 2 * dx int_3 ^ 9 (1/4 + 1/16) * (1 + 2 / (sqrtx) + 1 / x) dx (1/16) * int_3 ^ 9 (1 + 16) * [x + (2 * x ^ (1/2)) / (1/2) + ln x] _3 ^ 9 (1/16) * [x + 4 * x ^ (1/16) * [(9 + 4 * 9 ^ (1/2) + ln 9) - (3 + 4 * 3 ^ (1/2) + ln3)] (1/16) * [9 + 12 + ln 9-3-4sqrt3-ln 3] (1/16) (18-4sqrt3 + ln 3) 9/8-sqrt3 / 4 + 1/16 * ln 3 0.760650566
Cum evaluați integritatea definită integrată sin2 din [0, pi / 6]?
Int_0 ^ (pi / 6) sin2theta = 1/4 int_0 ^ (pi / 6) sin (2theta) d theta culoare (roșu) (u = 2theta) culoare (roșu) (du = 2d theta) d] / 2) Limitele sunt schimbate în culori (albastru) ([0, pi / 3]) int_0 ^ (pi / 6) sin2thetad theta = int_color 3) sincolor (roșu) (u (du) / 2) = 1 / 2int_0 ^ (pi / 3) sinudu După cum știm teintsinx = -cosx = -1/2 cos (pi / / 2 (1 / 2-1) = - 1/2 * -1 / 2 = 1/4 deci int_0 ^ (pi / 6) sin2theta = 1/4