Răspuns:
Vezi explicația …
Explicaţie:
Funcția "cel mai mare întreg", cunoscută și sub denumirea de "etaj", are următoarele limite:
#lim_ (x -> + oo) etaj (x) = + oo #
#lim_ (x -> - oo) etaj (x) = -oo #
Dacă
#img (x-> n ^ -) etaj (x) = n-1 #
#lim_ (x-> n ^ +) etajul (x) = n #
Deci limitele stânga și dreapta diferă la orice număr întreg și funcția este discontinuă acolo.
Dacă
#lim_ (x-> a) etaj (x) = etaj (a) #
Deci limitele stânga și dreapta sunt de acord cu oricare alt număr Real și funcția este continuă acolo.
Perimetrul unui triunghi este de 29 mm. Lungimea primei părți este de două ori lungimea celei de-a doua părți. Lungimea celei de-a treia părți este de 5 mai mult decât lungimea celei de-a doua părți. Cum găsiți lungimile laterale ale triunghiului?
S_1 = 12 s_2 = 6 s_3 = 11 Perimetrul unui triunghi este suma lungimilor tuturor laturilor sale. În acest caz, se dă că perimetrul este de 29 mm. Deci, pentru acest caz: s_1 + s_2 + s_3 = 29 Deci, rezolvând pentru lungimea laturilor, traducem instrucțiuni în forma dată în ecuație. "Lungimea primei părți este de două ori lungimea celei de-a doua părți" Pentru a rezolva acest lucru, atribuim o variabilă aleatoare fie s_1 fie s_2. Pentru acest exemplu, l-aș lăsa x să fie lungimea celei de-a doua părți pentru a evita să aibă fracții în ecuația mea. astfel încât știm că: s_1 = 2s_2 da
Produsul a două numere întregi consecutive este de 29 de ori mai mic decât de 8 ori suma lor. Găsiți cele două numere întregi. Răspundeți sub forma de puncte pereche cu cea mai mică dintre cele două întregi?
(X, x + 2) = x (x + x + 2) - 29 (x, x) :. x ^ 2 + 2x = 8 (2x + 2) - 29:. x ^ 2 + 2x = 16x + 16-29:. x ^ 2 + 2x - 16x - 16 + 29 = 0:. x ^ 2 - 14x + 13 = 0:. x ^ 2-x-13x + 13 = 0:. x (x - 1) - 13 (x - 1) = 0:. (x - 13) (x - 1) = 0:. x = 13 sau 1 Acum, CASE I: x = 13:. x + 2 = 13 + 2 = 15:. Numerele sunt (13, 15). Cazul II: x = 1:. x + 2 = 1 + 2 = 3:. Numerele sunt (1, 3). De aici, deoarece aici se formează două cazuri; perechea de numere poate fi ambele (13, 15) sau (1, 3).
Care este graficul celei mai mari funcții întregi?
Aceasta este imaginea imprumutata de la Mathwords.com: Sper ca acest lucru a fost de ajutor.