Având în vedere ecuația:
# Y = 4x ^ 2 + 5x + 7 #
# Y = 4 (x ^ 2 + 5 / 4x) + 7 #
# Y = 4 (x ^ 2 + 5 / 4x + 25/64) -25/64 + 7 #
# Y = 4 (x + 5/8) ^ 2 + 423/64 #
# (X + 5/8) ^ 2 = 1/4 alineatul (y-423/64) #
Comparând ecuația de mai sus cu forma standard a parabolei # X ^ 2 = 4AY # primim
# X = x + 5/8, Y = y-423/64, a = 1/16 #
Vertex de Parabola
# X = 0, Y = 0 #
# x + 5/8 = 0, y-423/64 = 0 #
# x = -5 / 8, y = 423/64 #
#(-5/8, 423/64)#
Focusul parabolei
# X = 0, Y = a #
# x + 5/8 = 0, y-423/64 = 1/16 #
# x = -5 / 8, y = 427/64 #
#(-5/8, 427/64)#
Directrix de parabola
# Y = -a #
# Y-423/64 = -1/16 #
# Y = 419/64 #