Răspuns:
Explicaţie:
Voi transforma fracțiile în zecimale, astfel încât procesul de explicare poate fi înțeles mai ușor. Răspunsul va fi transformat înapoi în fracțiune, sper că este în regulă.
Pentru astfel de probleme, doriți să obțineți variabila pe o parte a ecuației și constantele dvs. (un număr pe cont propriu) pe cealaltă parte.
Adăugați 1,5 la ambele părți ale ecuației pentru a obține variabila dvs. m, de la sine, pentru a putea scăpa de 1,5 în stânga și a avea constantele dvs. pe partea dreaptă:
#m - 1.5 = -1.25 #
#color (alb) (aaa) +1,5 culoare (alb) (aa) + 1,5 #
#m = 0,25 #
#m = 1/4 #
Cum rezolvi 9x-9y = 27, 9y-9x = -27 prin grafic?
Toate punctele care aparțin liniei drepte 9x-9y = 27 Rezolvarea unui sistem înseamnă găsirea soluțiilor comune ale ecuațiilor. Din punct de vedere geometric, înseamnă că găsim punctele pe care le au în comun pe un plan cartezian, cu alte cuvinte soluțiile unui sistem sunt punctul în care interceptează funcțiile. În cazul tău, ai două ecuații care sunt la fel. De fapt: (-1) (9y-9x) = (- 27) (- 1) => - 9y + 9x = 27 => 9x-9y = 27 Cele două ecuații ocupă aceleași puncte în plan, toate punctele care aparțin liniei drepte 9x-9y = 27 grafic {9x-9y = 27 [-10, 10, -5, 5]} grafic {9y-9x = -27 [ 5]
Formula pentru aria unui trapez este A = 1/2 (b_1 + b_2) h. Cum rezolvi pentru b_1?
(2) / h = b_1 + b_2 "se scade ambele părți cu 2" 2A = (b_1 + b_2) h " (2A) / h-b_2 = b_1 "sau" b_1 = (2A) / h-b_2
Formula pentru aria suprafeței unei prisme dreptunghiulare este S = 2 / w + 2wh + 2 lh. Cum rezolvi pentru w?
Aceasta este formula incorectă pentru suprafața unei prisme dreptunghiulare. Formula corectă este: S = 2 (wl + wh + lh) Vezi mai jos un proces pentru a rezolva această formulă pentru w În primul rând, împărțiți fiecare parte a ecuației după culoare (roșu) (2) echilibrat: S / culoare (roșu) (2) = (2 (wl + wh + lh)) / culoare (roșu) ) S / 2 = wl + wh + lh Apoi, se scade culoarea (roșu) (lh) din fiecare parte a ecuației pentru a izola termenii w (lh) = wl + wh + lh - culoare (roșu) (lh) S / 2 - lh = wl + wh, atunci factorul aw din fiecare termen din partea dreaptă a ecuației da: S / 2 - lh = w (l + h) Acum