Răspuns:
Explicaţie:
Factorizarea primară a
#543 = 3 * 181#
Deoarece nu are factori pătrați mai mari decât
Este un număr irațional între
Interpolarea liniară, putem aproxima:
#sqrt (543) ~~ 23+ (543-529) / (576-529) = 23 14/47 ~ ~ 23,3 #
Pentru mai multă acuratețe, lăsați
# {(p_ (i + 1) = p_i ^ 2 + 543 q_i ^ 2), (q_ (i + 1) = 2p_iq_i)
Asa de:
# {(p_1 = p_0 ^ 2 + 543 q_0 ^ 2 = 233 ^ 2 + 543 * 10 ^ 2 = 54289 + 54300 = 108589)
Doar această iterație este suficientă pentru a obține
#sqrt (543) ~~ p_1 / q_1 = 108589/4660 ~ ~ 23.30236 #
Dacă vrem mai multă acuratețe, repetă din nou.
Notă de subsol
Repetarea exactă a fracțiunii pentru
# 543 = 23; bar (3,3,3,1,14,1,3,3,3,46) #
din care se poate găsi soluția ecuației lui Pell:
#669337^2 = 543 * 28724^2 + 1#
care face
Ce este (rădăcina pătrată a rădăcină pătrată [2] + 2 rădăcină pătrată de [2]) (rădăcină de 4square de la [6] - 3 rădăcină pătrată de 2)?
12 + 5sqrt12 Înmulțim multiplicarea încrucișată, adică (sqrt6 + 2sqrt2) (4sqrt6 - 3sqrt2) este egală cu sqrt6 * 4sqrt6 + 2sqrt2 * 4sqrt6 -sqrt6 * 3sqrt2 - 2sqrt2 * 3sqrt2 Timpul rădăcinilor pătrate este egal cu numărul sub rădăcină, astfel încât 4 * 6 + 8sqrt2sqrt6 - 3sqrt6sqrt2 - 6 * 2 Am pus sqrt2sqrt6 ca dovezi: 24 + (8-3) sqrt6sqrt2 - 12 Putem uni aceste două rădăcini într- nu sunt ambele negative. Deci, primim 24 + 5sqrt12 - 12 În cele din urmă, luăm doar diferența celor două constante și o numim o zi 12 + 5sqrt12
Care este rădăcina pătrată de 3 + rădăcina pătrată de 72 - rădăcina pătrată de 128 + rădăcina pătrată de 108?
(108) Știm că 108 = 9 * 12 = 3 ^ 3 * 2 ^ 2, deci sqrt (108) = sqrt (3 ^ 3 * 2 ^ 2) = 6sqrt (3) sqrt (3) + sqrt (72) - sqrt (128) + 6sqrt (3) 3, deci sqrt (72) = sqrt (3 ^ 2 * 2 ^ 3) = 6sqrt (2) sqrt (3) + 6sqrt (2) - sqrt (128) + 6sqrt , deci sqrt (128) = sqrt (2 ^ 6 * 2) = 8sqrt (2) sqrt (3) + 6sqrt (2) - 8sqrt (2) + 6sqrt
Care este rădăcina pătrată de 7 + rădăcină pătrată de 7 ^ 2 + rădăcină pătrată de 7 ^ 3 + rădăcină pătrată de 7 ^ 4 + rădăcină pătrată de 7 ^ 5?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) Primul lucru pe care il putem face este anularea radacinilor celor cu puteri uniforme. Deoarece: sqrt (x ^ 2) = x și sqrt (x ^ 4) = x ^ 2 pentru orice număr, putem spune că sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) și că 7 ^ 2 poate ieși din rădăcină! Acelasi lucru este valabil si pentru 7 ^ 5 dar este rescris ca 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7) + 7 + 7sqrt (7) + 49 + 49sqrt (7) Acum punem rădăcina în probe, sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) +