Cum rezolvați log_2 (-5x) = log_ (2) 3 + log_2 (x + 2)?

Cum rezolvați log_2 (-5x) = log_ (2) 3 + log_2 (x + 2)?
Anonim

# Log_2 (-5x) = log_2 (3) + log_2 (x + 2) #

Din #Buturuga# proprietăți știm că:

#log_c (a * b) = log_c (a) + log_c (b) #

#implies log_2 (-5x) = log_2 {3 (x + 2)} #

#implies log_2 (-5x) = log_2 (3x + 6) #

De asemenea, formați #Buturuga# proprietăți știm că:

Dacă #log_c (d) = log_c (e) #, atunci # D = e #

#implies -5x = 3x + 6 #

#implies 8x = -6 #

#implies x = -3 / 4 #