Răspuns:
sau
Explicaţie:
Mai întâi etichetați coordonatele.
Panta (m) este creșterea (schimbarea în y) împărțită la rularea (schimbarea în x),
asa de
Formula liniară standard este
Înlocuiți acest lucru
Întotdeauna verificați răspunsul prin înlocuirea celeilalte seturi de coordonate în ecuația:
Deoarece aceasta se potrivește cu coordonatele inițiale (59, 67), răspunsul trebuie să fie corect.
Care este ecuația liniei care trece prin (0, -1) și este perpendiculară pe linia care trece prin următoarele puncte: (8, -3), (1,0)?
7x-3y + 1 = 0 Înclinarea liniei care unește două puncte (x_1, y_1) și (x_2, y_2) este dată de (y_2-y_1) / (x_2-x_1) sau (y_1-y_2) / x_1-x_2 ) Deoarece punctele sunt (8, -3) și (1, 0), panta liniei care le unește va fi dată de (0 - (- 3)) / (1-8) sau (3) adică -3 / 7. Produsul de înclinare a două linii perpendiculare este întotdeauna -1. Prin urmare, panta perpendiculară la ea va fi 7/3 și, prin urmare, ecuația în formă de panta poate fi scrisă ca y = 7 / 3x + c Deoarece aceasta trece prin punctul (0, -1), punând aceste valori în ecuația de mai sus, obținem -1 = 7/3 * 0 + c sau c = 1 Prin urmar
Care este ecuația liniei care trece prin (0, -1) și este perpendiculară pe linia care trece prin următoarele puncte: (13,20), (16,1)?
Y = 3/19 * x-1 Panta liniei trece prin (13,20) și (16,1) este m_1 = (1-20) / (16-13) = - 19/3 perpendicularitatea între două linii este produsul pantelor lor egale cu -1: .m_1 * m_2 = -1 sau (-19/3) * m_2 = -1 sau m_2 = 3/19 Astfel linia care trece prin 0, -1 ) este y + 1 = 3/19 * (x-0) sau y = 3/19 * x-1 Graficul {3/19 * x-1 [
Care este ecuația liniei care trece prin (0, -1) și este perpendiculară pe linia care trece prin următoarele puncte: (-5,11), (10,6)?
Y = 3x-1 "ecuația unei linii drepte este dată de" y = mx + c "unde m = gradientul și" c = "interceptul y" "dorim gradientul liniei perpendiculare pe linia" "trece prin punctele date" (-5,11), (10,6) vom avea nevoie de m_1m_2 = -1 pentru linia dată m_1 = (Deltay) / (Deltax) = (y_2-y_1) / (x_2 -x_1): .m_1 = (11-6) / (- 5-10) = 5 / -15 = -5 / 15 = -1/3 "" m_1m_2 = -1 => 1/3xxm_2 = -1: .m_2 = 3 astfel încât eqn. devine y = 3x + c trece prin "" (0, -1) -1 = 0 + c => c = -1: .y = 3x-1