Răspuns:
De cand
Explicaţie:
Noi avem
Suma generală a unei serii geometrice infinite este
În cazul nostru,
Seriile geometrice converg numai când
Răspuns:
Explicaţie:
Unde
Ni se spune că raportul comun este
Primul termen este
Suma unei serii geometrice este dată ca:
Pentru suma la infinit, aceasta simplifică:
Ni sa spus că această sumă este S.
Înlocuindu-ne în valorile noastre pentru a și r:
Factorul numerotatorului:
Multiplicați numărul și numitorul prin
Anularea:
Pentru a găsi valorile posibile ne amintim că o serie geometrică are doar o sumă pentru infinit dacă
adică
Primul și al doilea termen al unei secvențe geometrice sunt respectiv primul și al treilea termen al unei secvențe liniare. Al patrulea termen al secvenței liniare este de 10, iar suma primelor cinci termeni este 60. Găsiți primii cinci termeni ai secvenței liniare?
O secvență geometrică tipică poate fi reprezentată ca c_0a, c_0a ^ 2, cdots, c_0a ^ k și o secvență aritmetică tipică ca c_0a, c_0a + Delta, c_0a + 2Delta, cdot, c_0a + kDelta Apelarea c_0 a ca primul element al secvenței geometrice pe care o avem {(c_0 a ^ 2 = c_0a + 2Delta -> "Primul și al doilea din GS sunt primul și al treilea dintr-un LS"), (c_0a + 3Delta = > "Al patrulea termen al secvenței liniare este 10"), (5c_0a + 10Delta = 60 -> "Suma primilor cinci termeni este de 60"):} Rezolvarea pentru c_0, a Delta obținem c_0 = 64/3 , a = 3/4, Delta = -2 și primele cinci elemente pentr
Al patrulea termen al unui AP este egal cu cel de-al treilea termen al celui de-al șaptelea termen depășește dublul celui de-al treilea termen cu 1. Găsiți primul termen și diferența comună?
A = 2/13 d = -15/13 T_4 = 3 T_7 ......... (1) T_4 - 2T_3 = 1 ........ (2) T_n = a + 1) d T_4 = a + 3d T_7 = a + 6d T_3 = a + 2d Valorile de substituire în ecuația (1) a + 3d = 3a + 18d = 2a + 15d = 0 .... (3) Înlocuirea valorilor în ecuația (2), a + 3d - (2a + 4d) = 1 = a + 3d - 2a - 4d = 1 - a - d = 1 a + d = -1. ........... (4) La rezolvarea simultană a ecuațiilor (3) și (4), d = 2/13 a = -15/13
Al doilea și al cincilea termen al seriei geometrice sunt 750 și, respectiv, 6. Găsiți raportul comun și primul termen al seriei?
R = -1 / 5, a_1 = -3750 Culoarea (albastru) "n-lea termen al unei secvențe geometrice" este. culoarea (albă) (2/2) |))) unde (a) este a (a) primul termen și r, raportul comun. rArr "al doilea termen" = ar ^ 1 = 750to (1) rArr "al cincilea termen" = ar ^ 4 = -6to (2) ) / (anulați (a) r) = (- 6) / 750 rArrr3 = -1 / 125rArrr = -1/5 Înlocuiți această valoare în 1 pentru a găsi rArraxx-1/5 = 750 rArra = (-1/5) = - 3750