Răspuns:
Explicaţie:
asa de
acum
și a pune împreună
Dacă păcatul 3x = cos x, unde x este între 0 și 90degree inclusiv, care este valoarea lui x?
X = 22,5 ° Având în vedere că rarrsin3x = cosx rarrsin3x = sin (90-x) rarr3x = 90-x rarr4x = 90 rarrx = 22,5 °
Păcatul theta / x = cos theta / y apoi păcatul theta - cos theta =?
Dacă frac { the sin}} {x} = frac {forta theta} {y} atunci sin theta - cos theta = frac {x - f} {f} {f} {f} {f} {f} {f} {f} {f} {f} și a adiacent y astfel cos theta = frac { y y} {sqrt {x ^ 2 + y ^ 2} păcat theta = tan theta cos theta sin theta - cos theta = tan theta cos theta - cos theta = cos f (x) = (f) {f (x) = {f (x) } {sqrt {x ^ 2 + y ^ 2}}
Cum rezolvi păcatul (2x) cos (x) = păcat (x)?
Xnpi, 2npi + - (pi / 4) și 2npi + - ((3pi) / 4) unde n în ZZ rarrsin2xcosx = sinx rarr2sinx * cos ^ 2x-sinx = 0 rarrsinx (2cos ^ (sqrt2cosx + 1) * (sqrt2cosx-1) = 0 Atunci când sinx = 0 rarrx = npi Când sqrt2cosx + 1 = 0 rarrcosx = -1 / sqrt2 = cos (3pi) / 4 rarrx = 2npi + 4) Atunci când sqrt2cosx-1 = 0 rarrcosx = 1 / sqrt2 = cos (pi / 4) rarrx = 2npi + - (pi /