Răspuns:
Explicaţie:
Lăsa
Lăsa
De asemenea, să lăsați
Ecuația și graficul unui polinom sunt arătate mai jos, graficul atinge valoarea maximă atunci când valoarea lui x este 3 care este valoarea y a acestui maxim y = -x ^ 2 + 6x-7?
Trebuie să evaluăm polinomul la maxim x = 3, pentru orice valoare de x, y = -x ^ 2 + 6x-7, înlocuind astfel x = 3 obținem: y = - (3 ^ 2) + 6 * 3 -7 = -9 + 18-7 = 18-16 = 2, deci valoarea y la maximul x = 3 este y = 2 Vă rugăm să rețineți că acest lucru nu demonstrează că x = 3 este maximul
Care este magnitudinea accelerației blocului atunci când este în punctul x = 0,24 m, y = 0,52 m? Care este direcția accelerației blocului atunci când este în punctul x = 0.24m, y = 0.52m? (Vezi detalii).
Deoarece x și y sunt ortogonale unele cu altele, acestea pot fi tratate independent. De asemenea, știm că vcF = -gradU: .x componentul forței bidimensionale este F_x = - (delU) / (delx) F_x = -del / (delx) [(5.90 Jm ^ -2) 3.65 Jm ^ -3) y ^ 3] F_x = -11.80x componentă x a accelerației F_x = ma_x = -11.80x 0.0400a_x = -11.80x => a_x = -11.80 / 0.0400x => a_x = -295x La punctul dorit a_x = -295xx0.24 a_x = -70.8 ms ^ -2 În mod similar, componenta y a forței este F_y = -del / (dely) [(5.90 jm ^ -2) x ^ 2- ^ -3) y ^ 3] F_y = 10.95y ^ 2 componentă a accelerației F_y = ma_ = 10.95y ^ 2 0.0400a_y = 10.95y ^ 2 => a_y
Atunci când un polinom este divizat de (x + 2), restul este -19. Atunci când același polinom este împărțit la (x-1), restul este 2, cum determinăm restul atunci când polinomul este împărțit prin (x + 2) (x-1)?
Știm că f (1) = 2 și f (-2) = - 19 din Teorema rămășiței Acum găsim restul polinomului f (x) atunci când este împărțit (x-1) (x + 2) forma Ax + B, deoarece este restul după împărțirea cu un patrat. Putem acum multiplica divizorul ori de la coeficientul Q ... f (x) = Q (x-1) (x + 2) + Ax + B Apoi, inserați 1 și -2 pentru x ... f (1) Q (1-1) (1 + 2) + A (1) + B = A + B = 2 f (-2) B = -2A + B = -19 Rezolvând aceste două ecuații, obținem A = 7 și B = -5 Remainder = Ax + B = 7x-5