Răspuns:
Explicaţie:
O linie prin
Toate liniile perpendiculare vor avea o pantă de
Folosind forma punct-pantă, o linie prin origine cu această pantă perpendiculară va avea o ecuație:
sau
Care este ecuația liniei care trece prin (0, -1) și este perpendiculară pe linia care trece prin următoarele puncte: (8, -3), (1,0)?
7x-3y + 1 = 0 Înclinarea liniei care unește două puncte (x_1, y_1) și (x_2, y_2) este dată de (y_2-y_1) / (x_2-x_1) sau (y_1-y_2) / x_1-x_2 ) Deoarece punctele sunt (8, -3) și (1, 0), panta liniei care le unește va fi dată de (0 - (- 3)) / (1-8) sau (3) adică -3 / 7. Produsul de înclinare a două linii perpendiculare este întotdeauna -1. Prin urmare, panta perpendiculară la ea va fi 7/3 și, prin urmare, ecuația în formă de panta poate fi scrisă ca y = 7 / 3x + c Deoarece aceasta trece prin punctul (0, -1), punând aceste valori în ecuația de mai sus, obținem -1 = 7/3 * 0 + c sau c = 1 Prin urmar
Care este ecuația liniei care trece prin origine și este perpendiculară pe linia care trece prin următoarele puncte: (3,7), (5,8)?
Y = -2x În primul rând, trebuie să găsim gradientul liniei care trece prin (3,7) și (5,8) "gradient" = (8-7) / (5-3) "gradient" = 1 / 2 Acum, deoarece noua linie este PERPENDICULARă la linia care trece prin cele două puncte, putem folosi această ecuație m_1m_2 = -1 unde gradientele a două linii diferite atunci când se înmulțește ar trebui să fie egale cu -1 dacă liniile sunt perpendiculare una pe cealaltă, adică în unghi drept. prin urmare, noua linie va avea un gradient de 1 / 2m_2 = -1 m_2 = -2 Acum putem folosi formula de gradient punct pentru a gasi ecuatia liniei y-0 = -2 (
Care este ecuația liniei care trece prin origine și este perpendiculară pe linia care trece prin următoarele puncte: (9,4), (3,8)?
Vezi mai jos Pantă a liniei care trece prin (9,4) și (3,8) = (4-8) / (9-3) -2/3 astfel încât orice linie perpendiculară pe linia care trece prin (9,4 ) și (3,8) vor avea pantă (m) = 3/2 De aici vom afla ecuația liniei care trece prin (0,0) și având panta = 3/2 ecuația necesară este (y-0 ) = 3/2 (x-0) ie2y-3x = 0