Răspuns:
Orthocenterul triunghiului este la
Explicaţie:
Orthocenter este punctul în care cele trei "altitudini" ale unui triunghi
întâlni. O "altitudine" este o linie care trece printr-un vârf (colț
punct) și este în unghi drept față de partea opusă.
pe
la punct
Pantă de
Pantă perpendiculară
Ecuația liniei
Pantă de
Pantă perpendiculară
Ecuația liniei
Rezolvând ecuația (1) și (2) obținem punctul lor de intersecție, care
este ortocentrul. Înmulțirea ecuației (1) cu
primim,
Care este ortocentrul unui triunghi cu colțuri la (1, 2), (5, 6) și (4, 6) #?
Orthocenterul triunghiului este: (1,9) Fie triangleABC triunghiul cu colțuri la A (1,2), B (5,6) și C (4,6) Let, bar (AL) și bara (CN) sunt altitudinile pe bara laterală (BC), bar (AC) și, respectiv, bară (AB). Fie (x, y) intersecția a trei altitudini. Înclinarea barei (AB) = (6-2) / (5-1) = 1 => înclinația barei (CN) = - 1 [:. altitudine] și bar (CN) trece prin C (4,6) Deci, equn. din bara (CN) este: y-6 = -1 (x-4) ) / (4-1) = 4/3 => înclinarea barei (BM) = - 3/4 [altitudinea: ) este: y-6 = -3 / 4 (x-5) => 4y-24 = -3x + 15 culoare ieșită (roșu) ) se obține, culoarea (roșu) (y = 10-x până la (3
Ce este ortocentrul unui triunghi cu colțuri la (1, 3), (5, 7) și (2, 3) #?
Ortocentrul triunghiului ABC este H (5,0) Fie triunghiul ABC cu colțuri la A (1,3), B (5,7) și C (2,3). astfel încât panta "liniei" (AB) = (7-3) / (5-1) = 4/4 = 1 Let, bar (CN) _ | _bar (AB):. Panta "liniei" CN = -1 / 1 = -1, și trece prin C (2,3). : Equn. (y-3 = -1 (x-2) => y-3 = -x + 2 ie x + y = 5 ... to (1) (BC) = (7-3) / (5-2) = 4/3 Let, bar (AM) _ | _bar (BC):. Panta "liniei" AM = -1 / (4/3) = - 3/4 și trece prin A (1,3). : Equn. din linia AM este: y-3 = -3 / 4 (x-1) => 4y-12 = -3x + 3 ie 3x + 4y = 15 ... to (2) CN și "line" AM este orthocenterul triangleABC. Aș
Care este ortocentrul unui triunghi cu colțuri la (1, 3), (6, 2) și (5, 4)?
(1, 3), B (6, 2) și C (5, 4) sunt vârfurile triunghiului ABC: Înclinarea unei linii prin puncte : (x_1, y_1), (x_2, y_2): m = (y_2-y_1) / (x_2-x_1) Înclinarea AB: = (2-3) / (6-1) line este 5. Ecuația altitudinii de la C la AB: y-y_1 = m (x-x_1) => m = 5, C (5,4): y-4 = 5 (x-5) 21 Înclinația BC: = (4-2) / (5-6) = - 2 Înclinarea liniei perpendiculare este 1/2. Ecuația altitudinii de la A la BC: y-3 = 1/2 (x-1) y = (1/2) x + 5/2 Intersecția altitudinilor egale cu y: 5x-21 = x + 5/2 10x-42 = x + 5 9x = 47 x = 47/9 y = 5 * 47 / 9- 21 y = 46/9 Astfel Orthocenterul este la (x, y) 46/9) Pentru a verific