Funcția cosinusului oscilează între valorile -1 la 1.
Amplitudinea acestei funcții este înțeleasă ca fiind 1.
Valoarea maximă a funcției
Acest rezultat poate fi obținut cu ușurință folosind calculul diferențial.
În primul rând, amintiți-vă că pentru o funcție
Pentru funcția respectivă
Functia
Functia
Prin urmare, funcția
Jason estimează că mașina își pierde 12% din valoarea sa în fiecare an. Valoarea inițială este de 12.000. Care descrie cel mai bine graficul funcției care reprezintă valoarea mașinii după X de ani?
Graficul ar trebui să descrie dezintegrarea exponențială. În fiecare an, valoarea mașinii se înmulțește cu 0.88, astfel încât ecuația care dă valoarea y a mașinii după x ani este y = 12000 (0.88) x x Graficul {12000 (0.88) ^ x [-5, 20, -5000, 15000]}
Ecuația și graficul unui polinom sunt arătate mai jos, graficul atinge valoarea maximă atunci când valoarea lui x este 3 care este valoarea y a acestui maxim y = -x ^ 2 + 6x-7?
Trebuie să evaluăm polinomul la maxim x = 3, pentru orice valoare de x, y = -x ^ 2 + 6x-7, înlocuind astfel x = 3 obținem: y = - (3 ^ 2) + 6 * 3 -7 = -9 + 18-7 = 18-16 = 2, deci valoarea y la maximul x = 3 este y = 2 Vă rugăm să rețineți că acest lucru nu demonstrează că x = 3 este maximul
Schițați graficul y = 8 ^ x care indică coordonatele punctelor în care graficul traversează axele de coordonate. Descrieți complet transformarea care transformă graficul Y = 8 ^ x în graficul y = 8 ^ (x + 1)?
Vezi mai jos. Funcțiile exponențiale fără transformare verticală nu trec niciodată axa x. Ca atare, y = 8 ^ x nu va avea intercepte x. Va avea o interceptare y la y (0) = 8 ^ 0 = 1. Graficul ar trebui să semene cu următorul. Graficul {8 ^ x [-10, 10, -5, 5]} Graficul y = 8 ^ (x + 1) este graficul y = interceptul se află acum la (0, 8). De asemenea, veți vedea că y (-1) = 1. Graficul {8 ^ (x + 1) [-10, 10, -5, 5]} Sperăm că acest lucru vă ajută!