Răspuns:
Explicaţie:
Suntem rugați să simplificăm
Este acest răspuns mai simplu decât întrebarea inițială? Nu chiar.
Cu toate acestea, atunci când radicalii apar în numitorul unei fracțiuni, este o practică standard de a "raționaliza numitorul".
Adică să modifice expresia astfel încât numitorul să conțină numai numere raționale.
Ce este (rădăcina pătrată a rădăcină pătrată [2] + 2 rădăcină pătrată de [2]) (rădăcină de 4square de la [6] - 3 rădăcină pătrată de 2)?
12 + 5sqrt12 Înmulțim multiplicarea încrucișată, adică (sqrt6 + 2sqrt2) (4sqrt6 - 3sqrt2) este egală cu sqrt6 * 4sqrt6 + 2sqrt2 * 4sqrt6 -sqrt6 * 3sqrt2 - 2sqrt2 * 3sqrt2 Timpul rădăcinilor pătrate este egal cu numărul sub rădăcină, astfel încât 4 * 6 + 8sqrt2sqrt6 - 3sqrt6sqrt2 - 6 * 2 Am pus sqrt2sqrt6 ca dovezi: 24 + (8-3) sqrt6sqrt2 - 12 Putem uni aceste două rădăcini într- nu sunt ambele negative. Deci, primim 24 + 5sqrt12 - 12 În cele din urmă, luăm doar diferența celor două constante și o numim o zi 12 + 5sqrt12
Care este rădăcina pătrată de 7 + rădăcină pătrată de 7 ^ 2 + rădăcină pătrată de 7 ^ 3 + rădăcină pătrată de 7 ^ 4 + rădăcină pătrată de 7 ^ 5?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) Primul lucru pe care il putem face este anularea radacinilor celor cu puteri uniforme. Deoarece: sqrt (x ^ 2) = x și sqrt (x ^ 4) = x ^ 2 pentru orice număr, putem spune că sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) și că 7 ^ 2 poate ieși din rădăcină! Acelasi lucru este valabil si pentru 7 ^ 5 dar este rescris ca 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7) + 7 + 7sqrt (7) + 49 + 49sqrt (7) Acum punem rădăcina în probe, sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) +
Care este rădăcina pătrată de 8 împărțită prin rădăcină pătrată de 5 minus rădăcină pătrată de 2?
(Sqrt5 + sqrt2) / (sqrt 5 + sqrt2) = 1:. = Sqrt8 / (sqrt 5-sqrt 2) xx (sqrt 5 + sqrt 2) / (sqrt 5 + sqrt 2) (sqrt8 (sqrt5 + sqrt2)) / (sqrt5-sqrt2) (sqrt5 + sqrt2)): : (sqrt 8 sqrt 5 + sqrt 8 sqrt 2) / 3:. = (sqrt (8 * 5) + sqrt (8 * 2)) / 3:. = (sqrt 40 + sqrt 16) / 3:. (sqrt (2 * 2 * 2 * 5) + sqrt 16) / 3:. = sqrt2 * sqrt2 = 2:. sqrt (2 * 5) +4) / 3:. = (2 sqrt10 + 4) / 3