Răspuns:
Număr de ani
Numărul de ani = 11 ani și 11 luni
Explicaţie:
Dat -
Suma actuală
Suma viitoare
Dobânda anuală
Formula pentru calcularea dobânzii compuse
Rezolvați ecuația pentru
#n log (1 + r) = log (A / P) #
# N = (log (A / P)) / (log (1 + r)) = (log (1000/500)) / (log (1 + 0,6)) = 030,103 / 0.025306 = 11.895 #
Număr de ani
Numărul de ani = 11 ani și 11 luni
Anul trecut, Lisa a depus 7000 dolari într-un cont care plătea 11% din dobândă pe an și 1000 $ într-un cont care plătea o dobândă de 5% pe an. Nu s-au făcut retrageri din conturi. Care a fost dobânda totală dobândită la sfârșitul anului 1 an?
$ 820 Cunoaștem formula de interes simplu: I = [PNR] / 100 [În cazul în care I = Dobândă, P = Principal, N = Numărul de ani și R = Rata dobânzii] În primul caz, P = 7000 $. N = 1 și R = 11% Așadar, Dobânda (I) = [7000 * 1 * 11] / 100 = * 1 * 5] / 100 = 50 Prin urmare, dobânda totală = 770 $ + 50 $ = 820 $
Lucy a investit 6000 de dolari într-un cont care câștigă dobândă de 6% în mod continuu. Aproximativ cât va dura până când investiția lui Lucy va fi evaluată la 25.000 de dolari?
23,79 ani Amintiți-vă formula A = Pe ^ (rt). A este suma; P este cantitatea de pornire; e este constanta; r este rata dobânzii; t este timpul. $ 25,000 = 6000 de ori ori e ^ (0,06t) 25/6 = e ^ (0,06t) ln (25/6) = 0,06t t = ln (25/6) /0,06 # t = 23,79 ani
Sam investește 6000 dolari în note de trezorerie și obligațiuni. Notele plătesc o dobândă anuală de 8%, iar obligațiunile plătesc o dobândă anuală de 10%. Dacă dobânda anuală este de 550 USD, cât de mult este investit în obligațiuni?
3500 dolari în obligațiuni. 8% = se înmulțește cu 0,08 10% = se înmulțește cu 0,10 Să fie x suma în note și y să fie suma în obligațiuni. x + y = 6000 0.08x + 0.10y = 550 Înmulțim a doua ecuație cu 10: 0.8x + y = 5500 implică y = 5500 - 0.8x Înlocuiește pentru y în prima ecuație: x + (5500 - 0.8x) 0.2x = 500 Înmulțiți ambele părți cu 5: x = 2500 implică y = 3500