Răspuns:
y = 6
Explicaţie:
Deși ar trebui să începeți în mod normal prin găsirea pantei folosind formula de pantă și conectând-o la ecuația / formula pantă-punct, ar trebui să vă gândiți mai întâi la întrebare. Dacă ați complotat punctele (-1,6) și (2,6), ați realiza că linia pe care cele două puncte le creează este orizontală. Linile orizontale au o pantă de zero. Această linie va fi scrisă ca y = 6 deoarece acea linie trece prin toate coordonatele cu 6 ca valoarea y.
Dacă întrebarea vă cere să găsiți ecuația liniei care trece prin punctele (6, -1) și (6,2), ecuația ar fi x = 6 deoarece linia respectivă trece prin toate coordonatele cu 6 ca x- valoare. Uită-te la perechile de coordonate; ambele au 6 ca o valoare x, deci trebuie să fie x = 6.
Care este ecuația liniei care trece prin (0, -1) și este perpendiculară pe linia care trece prin următoarele puncte: (8, -3), (1,0)?
7x-3y + 1 = 0 Înclinarea liniei care unește două puncte (x_1, y_1) și (x_2, y_2) este dată de (y_2-y_1) / (x_2-x_1) sau (y_1-y_2) / x_1-x_2 ) Deoarece punctele sunt (8, -3) și (1, 0), panta liniei care le unește va fi dată de (0 - (- 3)) / (1-8) sau (3) adică -3 / 7. Produsul de înclinare a două linii perpendiculare este întotdeauna -1. Prin urmare, panta perpendiculară la ea va fi 7/3 și, prin urmare, ecuația în formă de panta poate fi scrisă ca y = 7 / 3x + c Deoarece aceasta trece prin punctul (0, -1), punând aceste valori în ecuația de mai sus, obținem -1 = 7/3 * 0 + c sau c = 1 Prin urmar
Care este ecuația liniei care trece prin (0, -1) și este perpendiculară pe linia care trece prin următoarele puncte: (13,20), (16,1)?
Y = 3/19 * x-1 Panta liniei trece prin (13,20) și (16,1) este m_1 = (1-20) / (16-13) = - 19/3 perpendicularitatea între două linii este produsul pantelor lor egale cu -1: .m_1 * m_2 = -1 sau (-19/3) * m_2 = -1 sau m_2 = 3/19 Astfel linia care trece prin 0, -1 ) este y + 1 = 3/19 * (x-0) sau y = 3/19 * x-1 Graficul {3/19 * x-1 [
Care este ecuația liniei care trece prin (0, -1) și este perpendiculară pe linia care trece prin următoarele puncte: (-5,11), (10,6)?
Y = 3x-1 "ecuația unei linii drepte este dată de" y = mx + c "unde m = gradientul și" c = "interceptul y" "dorim gradientul liniei perpendiculare pe linia" "trece prin punctele date" (-5,11), (10,6) vom avea nevoie de m_1m_2 = -1 pentru linia dată m_1 = (Deltay) / (Deltax) = (y_2-y_1) / (x_2 -x_1): .m_1 = (11-6) / (- 5-10) = 5 / -15 = -5 / 15 = -1/3 "" m_1m_2 = -1 => 1/3xxm_2 = -1: .m_2 = 3 astfel încât eqn. devine y = 3x + c trece prin "" (0, -1) -1 = 0 + c => c = -1: .y = 3x-1