funcția de alimentare este definit ca
Are un domeniu de argumente pozitive
1)
2)
3)
4)
5)
6)
7)
Funcția de alimentare
Negativ întreg valori ale
Pentru mai multe detalii, vă rugăm să consultați prelegerea Unizor despre graficul unei funcții de alimentare după elementele de meniu Algebra - Grafice - Funcția de alimentare.
Fie f (x) = x-1. 1) Verificați dacă f (x) nu este nici oarecum ciudat. 2) Se poate scrie f (x) ca suma unei funcții uniforme și a unei funcții ciudate? a) Dacă da, expune o soluție. Există mai multe soluții? b) Dacă nu, dovedește că este imposibil.
Fie f (x) = | x -1 |. Dacă f este egal, atunci f (-x) ar fi egal cu f (x) pentru toate x. Dacă f sunt ciudate, atunci f (-x) ar fi egal -f (x) pentru toate x. Observați că pentru x = 1 f (1) = | 0 | = 0 f (-1) = -2 | = 2 Deoarece 0 nu este egal cu 2 sau -2, f nu este nici chiar nici ciudat. Poate fi scris ca g (x) + h (x), unde g este egal și h este impar? Dacă aceasta ar fi adevărată atunci g (x) + h (x) = | x - 1 |. Apelați această afirmație 1. Înlocuiți x cu -x. g (-x) + h (-x) = | -x - 1 | Deoarece g este egal și h este ciudat, avem: g (x) - h (x) = | -x - 1 | Apelați această afirmație 2. Introducem instrucțiunile
Care ar fi ecuația pentru graficul unei funcții care este tradus în 9 unități în jos și 4 unități la stânga lui f (x) = x ^ 2 și apoi dilatat vertical cu un factor de 1/2?
1 2 (x + 4) ^ 2-9 Punctul de pornire -> f (x) = x ^ 2 Fie g (x) funcția 'modificată' 9 unități în jos -> g 4 unități rămase -> g (x) = (x + 4) ^ 2-9 dilatate cu 1/2 -> g (x) = 1/2 (x + 4)
Schițați graficul y = 8 ^ x care indică coordonatele punctelor în care graficul traversează axele de coordonate. Descrieți complet transformarea care transformă graficul Y = 8 ^ x în graficul y = 8 ^ (x + 1)?
Vezi mai jos. Funcțiile exponențiale fără transformare verticală nu trec niciodată axa x. Ca atare, y = 8 ^ x nu va avea intercepte x. Va avea o interceptare y la y (0) = 8 ^ 0 = 1. Graficul ar trebui să semene cu următorul. Graficul {8 ^ x [-10, 10, -5, 5]} Graficul y = 8 ^ (x + 1) este graficul y = interceptul se află acum la (0, 8). De asemenea, veți vedea că y (-1) = 1. Graficul {8 ^ (x + 1) [-10, 10, -5, 5]} Sperăm că acest lucru vă ajută!