Răspuns:
Explicaţie:
Pentru a face mai ușor să le referim la ele, să numim primul vector
Aceasta este, în cuvinte, proiecția vectorului
Mai întâi, să găsim lungimea
Dar rețineți că în expresia ceea ce dorim de fapt este
Acum avem nevoie de produsul dot al lui
(pentru a găsi produsul punct înmulțim coeficienții lui
Acum avem tot ce avem nevoie:
Care este proiecția <0, 1, 3> pe <0, 4, 4>?
Proiecția vectorului este <0,2,2>, proiecția scalară este 2sqrt2. Vezi mai jos. Având date veca = <0,1,3> și vecb = <0,4,4>, putem găsi proj_ (vecb) veca, proiecția vectorială a veca pe vecb utilizând următoarea formulă: proj_ (vecb) veca = Veca * vecb) / (| vecb |)) vecb / | vecb | Adică produsul punct al celor doi vectori împărțiți prin magnitudinea vecb, înmulțit cu vecb împărțit la magnitudinea sa. Cea de-a doua cantitate este o cantitate vectorială, deoarece divizăm un vector printr-un scalar. Rețineți că divizăm vecb cu magnitudinea sa pentru a obține un vector unic (vector
Care este proiecția (2i -3j + 4k) pe (- 5 i + 4 j - 5 k)?
Răspunsul este = -7 / 11 <-5,4, -5> Proiecția vectorială a vecb pe veca este = (veca.vecb) / (|veca|) ^ 2veca Produsul dot este veca.vecb = <2, -3,4> <- 5,4, -5> = (- 10-12-20) = - 42 Modulul veca este = | <-5,4, -5> | = sqrt (25 + 16 +25) = sqrt66 Proiecția vectorului este = -42 / 66 <-5,4, -5> = -7 / 11 <-5,4, -5>
Care este diferența vizuală și matematică dintre proiecția vectorială a lui a pe b și proiecția ortogonală a lui a pe b? Sunt modalități diferite de a spune același lucru?
În ciuda faptului că magnitudinea și direcția sunt la fel, există o nuanță. Vectorul de proiecție ortogonală se află pe linia în care acționează celălalt vector. Celălalt ar putea fi paralel Proiecția vectorială este doar o proiecție în direcția celuilalt vector. În direcție și amploare, ambele sunt aceleași. Totuși, vectorul de proiecție ortogonală este considerat a fi pe linia în care acționează celălalt vector. Proiecția vectorilor poate fi paralelă