Suprafața trapezoidului este de 56 unități². Lungimea de sus este paralelă cu lungimea inferioară. Lungimea maximă este de 10 unități, iar lungimea inferioară este de 6 unități. Cum aș găsi înălțimea?
Zona trapezului = 1/2 (b_1 + b_2) xxh Folosind formula de zonă și valorile date în problemă ... 56 = 1/2 (10 + 6) xxh Acum rezolvați pentru h ... h = 7 unități speranța că a ajutat
Raza cercului mai mare este de două ori mai mare decât raza cercului mai mic. Zona de gogoasa este de 75 pi. Găsiți raza cercului mai mic (interior).
Raza mai mică este 5 Fie r = raza cercului interior. Atunci raza cercului mai mare este 2r Din referință obținem ecuația pentru aria anulară: A = pi (R ^ 2-r ^ 2) Substituentul 2r pentru R: A = pi ((2r) 2) Simplificați: A = pi ((4r ^ 2 ^ 2) A = 3pir ^ 2 Înlocuiți în zona dată: 75pi = 3pir ^ 2 Împărțiți ambele părți cu 3pi: 25 = r ^ 2 r = 5
Volumul V, în unități cubice, al unui cilindru este dat de V = πr ^ 2h, unde r este raza și h este înălțimea, atât în aceleași unități. Găsiți raza exactă a unui cilindru cu o înălțime de 18 cm și un volum de 144p cm3. Exprimați răspunsul în cel mai simplu mod?
R = 2sqrt (2) Știm că V = hpir ^ 2 și știm că V = 144pi și h = 18 144pi = 18pir ^ 2 144 = 18r ^ 2 r ^ 2 = 144/18 = 8 r = ) = sqrt (4 * 2) = sqrt (4) sqrt (2) = 2sqrt (2)