Răspuns:
Am incercat aceasta:
Explicaţie:
Apelați cele două numere consecutive impare:
și
noi avem:
Să utilizăm Formula Qadratică pentru a ajunge
Prin urmare, numerele noastre pot fi:
și
sau:
și
Produsul cu două numere întregi consecutive este 24. Găsiți cele două numere întregi. Răspundeți sub formă de puncte pereche, cu cel mai mic dintre cele două numere întregi. Răspuns?
Cele două numere consecutive, chiar întregi: (4,6) sau (-6, -4) Fie culoarea (roșu) (n și n-2 sunt cele două numere consecutive, n-2 este 24 ie n (n-2) = 24 => n ^ 2n-24 = 0 Acum, [(-6) + 4 = -2 și (-6) xx4 = (N-6) (n + 4) = 0: n-6 = 0 sau n (n-6) + 4 = 0 ... până la [n inZZ] => culoare (roșu) (n = 6 sau n = -4 (i) = 6-2 = culoare (roșu) (4) Deci, cele două numere consecutive, chiar întregi: (4,6) (ii)) culoare roșie n = = -4-2 = culoare (roșu) (- 6) Deci, cele două numere consecutive, chiar și: (- 6, -4)
Produsul a două numere întregi consecutive este de 29 de ori mai mic decât de 8 ori suma lor. Găsiți cele două numere întregi. Răspundeți sub forma de puncte pereche cu cea mai mică dintre cele două întregi?
(X, x + 2) = x (x + x + 2) - 29 (x, x) :. x ^ 2 + 2x = 8 (2x + 2) - 29:. x ^ 2 + 2x = 16x + 16-29:. x ^ 2 + 2x - 16x - 16 + 29 = 0:. x ^ 2 - 14x + 13 = 0:. x ^ 2-x-13x + 13 = 0:. x (x - 1) - 13 (x - 1) = 0:. (x - 13) (x - 1) = 0:. x = 13 sau 1 Acum, CASE I: x = 13:. x + 2 = 13 + 2 = 15:. Numerele sunt (13, 15). Cazul II: x = 1:. x + 2 = 1 + 2 = 3:. Numerele sunt (1, 3). De aici, deoarece aici se formează două cazuri; perechea de numere poate fi ambele (13, 15) sau (1, 3).
De trei ori, cea mai mare dintre cele două numere consecutive impare este de cinci ori mai mică decât de patru ori mai mică decât cea mai mică. Care sunt cele două numere?
Cele două numere sunt 11 și 13 Fie cele două numere consecutive impare să fie x și (x + 2). Deci x este mai mic și x + 2 este mai mare. Având în vedere că: 3 (x + 2) = 4x - 5 3x + 6 = 4x - 5 3x-4x = -5-6-x = -11 x = 11 și x + sunt 11 și 13