Răspuns:
Panta este
Explicaţie:
În primul rând, începeți cu ecuația dvs. să găsiți pantă cu două perechi ordonate:
Acum, etichetați perechile comandate:
Apoi conectați-le:
Simplifica. 3 - - 3 devine 3 + 3 deoarece două negative creează un pozitiv.
Simplifica.
Răspuns:
Explicaţie:
Mai întâi, pentru a găsi gradientul liniei, utilizați ecuația
care ne-ar da
Apoi substituiți gradientul (m) în ecuația unei linii
Pentru a găsi c (interceptul y), înlocuiți coordonatele în ecuație.
utilizând (3,6)
prin urmare,
sau
utilizând (-3,2)
prin urmare,
Prin urmare, ecuația liniei este
Răspuns:
Forma de intersecție a pantei:
Explicaţie:
Mai întâi găsiți panta folosind următoarea ecuație:
Punctul 1:
Punctul 2:
Conectați valorile cunoscute și rezolvați.
Simplifica.
Utilizați formula de panta punct a unei ecuații liniare. Veți avea nevoie de panta și unul din punctele date în întrebare.
O să folosesc
Puteți converti forma pantei punctului la forma de intersecție înclinată prin rezolvarea pentru
Extinde.
Simplifica
grafic {y-2 = 2/3 (x + 3) -10,08, 9,92, -3,64, 6,36}
Care este ecuația liniei care trece prin (0, -1) și este perpendiculară pe linia care trece prin următoarele puncte: (8, -3), (1,0)?
7x-3y + 1 = 0 Înclinarea liniei care unește două puncte (x_1, y_1) și (x_2, y_2) este dată de (y_2-y_1) / (x_2-x_1) sau (y_1-y_2) / x_1-x_2 ) Deoarece punctele sunt (8, -3) și (1, 0), panta liniei care le unește va fi dată de (0 - (- 3)) / (1-8) sau (3) adică -3 / 7. Produsul de înclinare a două linii perpendiculare este întotdeauna -1. Prin urmare, panta perpendiculară la ea va fi 7/3 și, prin urmare, ecuația în formă de panta poate fi scrisă ca y = 7 / 3x + c Deoarece aceasta trece prin punctul (0, -1), punând aceste valori în ecuația de mai sus, obținem -1 = 7/3 * 0 + c sau c = 1 Prin urmar
Care este ecuația liniei care trece prin (0, -1) și este perpendiculară pe linia care trece prin următoarele puncte: (13,20), (16,1)?
Y = 3/19 * x-1 Panta liniei trece prin (13,20) și (16,1) este m_1 = (1-20) / (16-13) = - 19/3 perpendicularitatea între două linii este produsul pantelor lor egale cu -1: .m_1 * m_2 = -1 sau (-19/3) * m_2 = -1 sau m_2 = 3/19 Astfel linia care trece prin 0, -1 ) este y + 1 = 3/19 * (x-0) sau y = 3/19 * x-1 Graficul {3/19 * x-1 [
Care este ecuația liniei care trece prin (0, -1) și este perpendiculară pe linia care trece prin următoarele puncte: (-5,11), (10,6)?
Y = 3x-1 "ecuația unei linii drepte este dată de" y = mx + c "unde m = gradientul și" c = "interceptul y" "dorim gradientul liniei perpendiculare pe linia" "trece prin punctele date" (-5,11), (10,6) vom avea nevoie de m_1m_2 = -1 pentru linia dată m_1 = (Deltay) / (Deltax) = (y_2-y_1) / (x_2 -x_1): .m_1 = (11-6) / (- 5-10) = 5 / -15 = -5 / 15 = -1/3 "" m_1m_2 = -1 => 1/3xxm_2 = -1: .m_2 = 3 astfel încât eqn. devine y = 3x + c trece prin "" (0, -1) -1 = 0 + c => c = -1: .y = 3x-1