Găsiți valoarea exactă? 2sinxcosx + sinx-2cosx = 1

Găsiți valoarea exactă? 2sinxcosx + sinx-2cosx = 1
Anonim

Răspuns:

# Rarrx = 2npi + - (2pi) / 3 # SAU # X = NPI + (- 1) ^ n (pi / 2) # Unde # # NrarrZ

Explicaţie:

# Rarr2sinx * cosx + sinx-2cosx = 1 #

#rarrsinx (2cosx + 1) -2cosx-1 = #

#rarrsinx (2cosx + 1) -1 (2cosx + 1) = 0 #

#rarr (2cosx + 1) (sinx-1) = 0 #

Fie, # 2cosx + 1 = 0 #

# Rarrcosx = -1 / 2 = -cos (pi / 3) = cos (PI- (2Pi) / 3) = cos ((2Pi) / 3) #

# Rarrx = 2npi + - (2pi) / 3 # Unde # # NrarrZ

SAU, # Sinx-1 = 0 #

# Rarrsinx = 1 = sin (pi / 2) #

# Rarrx = NPI + (- 1) ^ n (pi / 2) # Unde # # NrarrZ