Răspuns:
Explicaţie:
Pantă
Forma punctului de înclinare:
Utilizarea
Conversia în forma de intersecție a pantei:
Graficul grafic al liniei l din planul xy trece prin punctele (2,5) și (4,11). Graficul grafic al liniei m are o pantă de -2 și o interceptare x a lui 2. Dacă punctul (x, y) este punctul de intersecție al liniilor l și m, care este valoarea lui y?
Y = 2 Pasul 1: Determinați ecuația liniei l Avem prin formula pantă m = (y_2 - y_1) / (x_2 - x_1) = (11-5) / (4-2) = 3 ecuatia este y - y_1 = m (x - x_1) y - 11 = 3 (x - 4) y = 3x - 12 + 11 y = 3x - 1 Pasul 2: au y = 0. Prin urmare, punctul dat este (2, 0). Cu panta, avem următoarea ecuație. y - y = = m (x - x_1) y - 0 = -2 (x - 2) y = -2x + 4 Pasul 3: Scrieți și rezolvați un sistem de ecuații Vrem să găsim soluția sistemului { 3x - 1), (y = -2x + 4):} Prin substituție: 3x - 1 = -2x + 4 5x = 5 x = 1 Aceasta înseamnă că y = 3 (1) - 1 = 2.
Care este ecuația liniei care trece prin (0, -1) și este perpendiculară pe linia care trece prin următoarele puncte: (8, -3), (1,0)?
7x-3y + 1 = 0 Înclinarea liniei care unește două puncte (x_1, y_1) și (x_2, y_2) este dată de (y_2-y_1) / (x_2-x_1) sau (y_1-y_2) / x_1-x_2 ) Deoarece punctele sunt (8, -3) și (1, 0), panta liniei care le unește va fi dată de (0 - (- 3)) / (1-8) sau (3) adică -3 / 7. Produsul de înclinare a două linii perpendiculare este întotdeauna -1. Prin urmare, panta perpendiculară la ea va fi 7/3 și, prin urmare, ecuația în formă de panta poate fi scrisă ca y = 7 / 3x + c Deoarece aceasta trece prin punctul (0, -1), punând aceste valori în ecuația de mai sus, obținem -1 = 7/3 * 0 + c sau c = 1 Prin urmar
Scrieți forma pantă punct a ecuației cu pantă dată care trece prin punctul indicat. A.) linia cu panta -4 care trece prin (5,4). și de asemenea B.) linia cu panta 2 care trece prin (-1, -2). vă rugăm să ajutați, acest lucru confuz?
Y-4 = -4 (x-5) "și" y + 2 = 2 (x + 1)> "ecuația unei linii în" culoare " (X_1, y_1) "un punct pe linia" (A) "dat" m = -4 "și" (x_1, y_1) "(x_1, y_1) = (5,4)" înlocuind aceste valori în ecuație dă "y-4 = -4 (x-5) larrcolor (albastru) = 2 "și" (x_1, y_1) = (- 1, -2) y - (- 2)) = 2 (x - în formă de pantă punctată "