Răspuns:
Explicaţie:
Teorema binomică afirmă:
deci aici,
Primim:
Răspuns:
Explicaţie:
Extinderea binomică este dată de:
Prin urmare
Cum folosiți seria binomică pentru a extinde (5 + x) ^ 4?
(A + bx) ^ n, ninZZ; n> 0 este dat de: (a + bx) ^ n = suma_ (r = 0) ^ n ((n1) / (r1 (n-1) = (4!) / (0! * 4!) 5 ^ 4 + (4!) / (1! * 3!) (5) ^ 3x + (4!) / (2 *! 2!) (5) ^ (4) / (4 * 1) (5) x ^ 3 + (4) / (4 * 4 (5) ^ 3x + 6 (5) ^ 2x ^ 2 + 4 (5) x ^ 3 + ^ ^ (5 + x) ^ 4 = 625 + 500x + 150x ^ 2 + 20x ^
Cum folosiți seria binomică pentru a extinde sqrt (1 + x)?
Sqrt (1 + x) = (1 + x) ^ (1/2) = suma (1 // 2) _k / (k!) x ^ k cu x în CC Utilizați generalizarea formulei binomiale la numere complexe. Există o generalizare a formulei binomiale la numerele complexe. Formula lui binomială generală pare a fi (1 + z) ^ r = suma ((r) _k) / (k!) Z ^ k cu (r) _k = r (r-1). . (r-k + 1) (în funcție de Wikipedia). Să o aplicăm expresiei voastre. Aceasta este o serie de putere atât de evidentă, dacă vrem să avem șanse ca acest lucru să nu fie diferit, trebuie să setăm absx <1 și astfel vom extinde sqrt (1 + x) cu seria binomică. Nu voi demonstra că formula este adevărată, dar nu
Cum folosiți teorema binomică pentru a extinde (x-5) ^ 5?
(5 + x) ^ 5 = -3125 + 3125x -1250x ^ 2 + 250x ^ 3-25x ^ 4 + x ^ 5 (a + bx) (r)) a ^ (nr) (bx) ^ r = suma_ (r = 0) ^ n (n) x) ^ 5 = sum_ (r = 0) ^ 5 (5) / (r (5-r) (5!) / (0 (5-0)!) (- 5) ^ (5-0) x ^ 0 + (5!) / (1 (5-1)!) (- 5) ^ ( 5-1) x ^ 1 + (5) / (2 (5-2!))! (-! 5) ^ (5-2) x ^ 2 + (5) / (3 (5-3) !) (- 5) ^ (5-3) x ^ 3 + (5) / (4 (5-4!)) (-! 5) ^ (5-4) x ^ 4 + (5) / (5) - (5) - (5) - (5) 5 - 5) (5!) / (1 4!) (- 5) ^ 4x + (5!) / (2 3!) (- 5) ^ 3x ^ 2 + (5!) / ((3 2!) - (5) / (4! 1) (-5) x 4 + (5) / (510) x ^ 5 (-5 + x) (-5) ^ 4x + 10 (-5) ^ 3x ^ 2 + 10 (-5) ^ 2x ^ 3 + 5 x) ^ 5 = -3125 + 3125x -1250x ^ 2 + 250x ^ 3-25x ^ 4