Răspuns:
Vedeți un proces de soluție de mai jos:
Explicaţie:
În primul rând, trebuie să determinăm panta liniei. Panta poate fi găsită utilizând formula:
Unde
Înlocuirea valorilor din punctele din problemă dă:
Acum putem folosi formula pantă-punct pentru a găsi o ecuație pentru linie. Forma punct-pantă a unei ecuații liniare este:
Unde
Înlocuind panta pe care am calculat-o și valorile din primul punct al problemei dau:
De asemenea, putem înlocui pârtia pe care am calculat-o și valorile din cel de-al doilea punct al problemei oferind:
De asemenea, putem rezolva problema
Unde
Răspuns:
Explicaţie:
# "ecuația unei linii în" culoare (albastru) "panta-interceptarea formei" # este.
# • culoare (alb) (x) y = mx + b #
# "unde m este panta și b interceptul y" #
# "pentru a calcula m utilizați" color (albastru) "formula gradient" #
#color (roșu) (bar (ul (| culoare (alb) (2/2) de culoare (negru) (m = (y_2-y_1) / (x_2-x_1)) culoare (alb) (2/2) |))) #
# "permite" (x_1, y_1) = (- 2,2) "și" (x_2, y_2) = (3, -1)
#rArrm = (- 1-2) / (3 - (- 2)) = (- 3) / 5 = -3/5 #
# rArry = -3 / 5x + blarr "ecuația parțială" #
# "pentru a găsi b înlocuiți oricare dintre cele 2 puncte în" #
# "ecuația parțială" #
# "folosind" (3, -1) "apoi" #
# -1 = -9/5 + brArrb = 4/5 #
# rArry = -3 / 5x + 4 / 5larrcolor (roșu) "în formă de intersecție pantă" #
Care este ecuația liniei care trece prin (0, -1) și este perpendiculară pe linia care trece prin următoarele puncte: (8, -3), (1,0)?
7x-3y + 1 = 0 Înclinarea liniei care unește două puncte (x_1, y_1) și (x_2, y_2) este dată de (y_2-y_1) / (x_2-x_1) sau (y_1-y_2) / x_1-x_2 ) Deoarece punctele sunt (8, -3) și (1, 0), panta liniei care le unește va fi dată de (0 - (- 3)) / (1-8) sau (3) adică -3 / 7. Produsul de înclinare a două linii perpendiculare este întotdeauna -1. Prin urmare, panta perpendiculară la ea va fi 7/3 și, prin urmare, ecuația în formă de panta poate fi scrisă ca y = 7 / 3x + c Deoarece aceasta trece prin punctul (0, -1), punând aceste valori în ecuația de mai sus, obținem -1 = 7/3 * 0 + c sau c = 1 Prin urmar
Care este ecuația liniei care trece prin (0, -1) și este perpendiculară pe linia care trece prin următoarele puncte: (13,20), (16,1)?
Y = 3/19 * x-1 Panta liniei trece prin (13,20) și (16,1) este m_1 = (1-20) / (16-13) = - 19/3 perpendicularitatea între două linii este produsul pantelor lor egale cu -1: .m_1 * m_2 = -1 sau (-19/3) * m_2 = -1 sau m_2 = 3/19 Astfel linia care trece prin 0, -1 ) este y + 1 = 3/19 * (x-0) sau y = 3/19 * x-1 Graficul {3/19 * x-1 [
Care este ecuația liniei care trece prin (0, -1) și este perpendiculară pe linia care trece prin următoarele puncte: (-5,11), (10,6)?
Y = 3x-1 "ecuația unei linii drepte este dată de" y = mx + c "unde m = gradientul și" c = "interceptul y" "dorim gradientul liniei perpendiculare pe linia" "trece prin punctele date" (-5,11), (10,6) vom avea nevoie de m_1m_2 = -1 pentru linia dată m_1 = (Deltay) / (Deltax) = (y_2-y_1) / (x_2 -x_1): .m_1 = (11-6) / (- 5-10) = 5 / -15 = -5 / 15 = -1/3 "" m_1m_2 = -1 => 1/3xxm_2 = -1: .m_2 = 3 astfel încât eqn. devine y = 3x + c trece prin "" (0, -1) -1 = 0 + c => c = -1: .y = 3x-1