Răspuns:
Panta liniei prin
Explicaţie:
Formula pentru pantă a unei linii când două puncte (coordonate perechi)
Aplicând această formulă, obținem:
Linii A și B sunt perpendiculare. Panta liniei A este de -0,5. Care este valoarea lui x dacă panta liniei B este x + 6?
X = -4 Deoarece liniile sunt perpendiculare, știm că produsul celor două sunt gradient egal -1, deci m_1m_2 = -1 m_1 = -0,5 m_2 = x + 6 -0,5 (x + 6) = - 1 x + 6 = -1 / -0,5 = 1 / 0,5 = 2 x = 2-6 = -4
Linia A și linia B sunt paralele. Panta liniei A este -2. Care este valoarea lui x dacă panta liniei B este 3x + 3?
X = -5 / 3 Fie m_A și m_B gradientele liniilor A și B, dacă A și B sunt paralele, atunci m_A = m_B Deci știm că -2 = 3x + 3 Trebuie să rearanjăm pentru a găsi x - 2-3 = 3x + 3-3-5 = 3x + 0 (3x) / 3 = x = -5 / 3 Dovada: 3 (-5/3) + 3 = -5 + 3 = -2 = m_A
Scrieți forma pantă punct a ecuației cu pantă dată care trece prin punctul indicat. A.) linia cu panta -4 care trece prin (5,4). și de asemenea B.) linia cu panta 2 care trece prin (-1, -2). vă rugăm să ajutați, acest lucru confuz?
Y-4 = -4 (x-5) "și" y + 2 = 2 (x + 1)> "ecuația unei linii în" culoare " (X_1, y_1) "un punct pe linia" (A) "dat" m = -4 "și" (x_1, y_1) "(x_1, y_1) = (5,4)" înlocuind aceste valori în ecuație dă "y-4 = -4 (x-5) larrcolor (albastru) = 2 "și" (x_1, y_1) = (- 1, -2) y - (- 2)) = 2 (x - în formă de pantă punctată "