Răspuns:
Explicaţie:
Utilizați pătratul formulei de distanță:
Setați acest lucru la zero și apoi rezolvați pentru x:
Am folosit WolframAlpha pentru a rezolva această ecuație quartică.
Coordonatele x ale punctelor care formează o perpendiculară pe curbă cu punctul
Cele două puncte una sunt curba:
Panta din primul punct este:
Panta celui de-al doilea punct este:
Folosind punctul dat pentru forma punct-panta:
Iată graficul curbei și cele 2 perpendiculare pentru ao dovedi:
O linie trece prin (8, 1) și (6, 4). O a doua linie trece prin (3, 5). Care este un alt punct pe care linia a doua poate trece, dacă este paralel cu prima linie?
(1,7) Deci, mai întâi trebuie să găsim vectorul de direcție între (8,1) și (6,4) (6,4) - (8,1) = (2,3) Știm că o ecuație vector este alcătuit dintr-un vector de poziție și un vector de direcție. Știm că (3,5) este o poziție pe ecuația vectorului, astfel încât să putem folosi ca vector de poziție și știm că este paralel cu cealaltă linie, astfel încât să putem folosi acel vector de direcție (x, y) = (3, 4) + s (-2,3) Pentru a găsi un alt punct pe linie, înlocuiți orice număr în s în afară de 0 (x, y) = (3,4) +1 (-2,3) = (1,7 ) Deci (1,7) este un alt punct.
O linie trece prin (4, 3) și (2, 5). O a doua linie trece prin (5, 6). Care este un alt punct pe care linia a doua poate trece, dacă este paralel cu prima linie?
(3,8) Deci, mai întâi trebuie să găsim vectorul de direcție între (2,5) și (4,3) (2,5) - (4,3) = (2,2) Știm că o ecuație vector este alcătuit dintr-un vector de poziție și un vector de direcție. Știm că (5,6) este o poziție pe ecuația vectorului, astfel încât să putem folosi ca vector de poziție și știm că este paralel cu cealaltă linie pentru a putea folosi acel vector de direcție (x, y) = (5, 6) + s (-2,2) Pentru a găsi un alt punct de pe linie doar înlocuiți orice număr în s în afară de 0, deci vă permite să alegeți 1 (x, y) = (5,6) +1 (-2,2) (3,8) Deci (3,8) este un alt punct.
Care este ecuația în formă standard a unei linii perpendiculare care trece prin (5, -1) și care este interceptul x al liniei?
Vedeți mai jos pașii pentru a rezolva o astfel de întrebare: În mod normal, cu o întrebare de genul asta am avea o linie pentru a lucra cu asta, de asemenea, trece prin punctul dat. Din moment ce nu ni se dă acest lucru, o voi face și apoi vom continua cu întrebarea. Linia originală (așa-numita ...) Pentru a găsi o linie care trece printr-un anumit punct, putem folosi forma pantei punctuale a unei linii, forma generală a căreia este: (y-y_1) = m (x-x_1 ) Voi stabili m = 2. Linia noastră are apoi o ecuație de: (y - (- 1)) = 2 (x-5) => y + 1 = 2 (x-5) 11 și formularul standard: 2x-y = 11 Pentru a găsi