Răspuns:
Rădăcina pătrată a lui 204 este 2
Explicaţie:
Trebuie să încercați să găsiți un pătrat perfect de 204. Deci există multe modalități prin care puteți ajunge la 204, dar încercați să găsiți un pătrat perfect de 204. Deci 4 x 51 = 204. Deci, în casă, ar trebui să aveți
Răspuns:
Explicaţie:
Această întrebare este afișată sub "simplificarea radicalilor". și care se aplică în soluție.
Obiectivul este de a găsi orice valoare pătrată care poate fi folosită pentru a face 204. Acestea pot fi "extrase" din rădăcina pătrată. Dacă nu le puteți identifica folosind un arbore de factor prim. Nu trebuie să fie nevoie. O schiță rapidă și foarte gravă în marjă va face.
Din diagrama de mai sus rețineți că numărul primei prime pătraturi este de 2.
Deci avem
Folosind un calculator
Giving:
În cazul în care simbolul
Ce este (rădăcina pătrată a rădăcină pătrată [2] + 2 rădăcină pătrată de [2]) (rădăcină de 4square de la [6] - 3 rădăcină pătrată de 2)?
12 + 5sqrt12 Înmulțim multiplicarea încrucișată, adică (sqrt6 + 2sqrt2) (4sqrt6 - 3sqrt2) este egală cu sqrt6 * 4sqrt6 + 2sqrt2 * 4sqrt6 -sqrt6 * 3sqrt2 - 2sqrt2 * 3sqrt2 Timpul rădăcinilor pătrate este egal cu numărul sub rădăcină, astfel încât 4 * 6 + 8sqrt2sqrt6 - 3sqrt6sqrt2 - 6 * 2 Am pus sqrt2sqrt6 ca dovezi: 24 + (8-3) sqrt6sqrt2 - 12 Putem uni aceste două rădăcini într- nu sunt ambele negative. Deci, primim 24 + 5sqrt12 - 12 În cele din urmă, luăm doar diferența celor două constante și o numim o zi 12 + 5sqrt12
Care este rădăcina pătrată de 3 + rădăcina pătrată de 72 - rădăcina pătrată de 128 + rădăcina pătrată de 108?
(108) Știm că 108 = 9 * 12 = 3 ^ 3 * 2 ^ 2, deci sqrt (108) = sqrt (3 ^ 3 * 2 ^ 2) = 6sqrt (3) sqrt (3) + sqrt (72) - sqrt (128) + 6sqrt (3) 3, deci sqrt (72) = sqrt (3 ^ 2 * 2 ^ 3) = 6sqrt (2) sqrt (3) + 6sqrt (2) - sqrt (128) + 6sqrt , deci sqrt (128) = sqrt (2 ^ 6 * 2) = 8sqrt (2) sqrt (3) + 6sqrt (2) - 8sqrt (2) + 6sqrt
Care este rădăcina pătrată de 7 + rădăcină pătrată de 7 ^ 2 + rădăcină pătrată de 7 ^ 3 + rădăcină pătrată de 7 ^ 4 + rădăcină pătrată de 7 ^ 5?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) Primul lucru pe care il putem face este anularea radacinilor celor cu puteri uniforme. Deoarece: sqrt (x ^ 2) = x și sqrt (x ^ 4) = x ^ 2 pentru orice număr, putem spune că sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) și că 7 ^ 2 poate ieși din rădăcină! Acelasi lucru este valabil si pentru 7 ^ 5 dar este rescris ca 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7) + 7 + 7sqrt (7) + 49 + 49sqrt (7) Acum punem rădăcina în probe, sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) +