Răspuns:
Explicaţie:
O linie paralelă cu
Prin urmare, ecuația unei linii paralele cu
Notă: O linie perpendiculară pe
Linia L are ecuația 2x-3y = 5. Linia M trece prin punctul (3, -10) și este paralelă cu linia L. Cum determinați ecuația pentru linia M?
Vedeți un proces de soluție de mai jos: Linia L este în forma liniară standard. Forma standard a unei ecuații liniare este: culoare (roșu) (A) x + culoare (albastru) (B) y = culoare (verde) (albastru) (B) și culoarea (verde) (C) sunt numere întregi, iar A este ne-negativă și A, B și C nu au alți factori diferiți decât 1 culoare (roșu) (albastru) (3) y = culoare (verde) (5) Înclinația unei ecuații în formă standard este: m = -color (roșu) (3) = 2/3 Deoarece linia M este paralelă cu linia L, linia M va avea aceeași panta. Putem acum folosi formula de panta punct pentru a scrie o ecuatie pentru linia
Cum găsiți toate punctele de pe curba x ^ 2 + xy + y ^ 2 = 7 unde linia tangentă este paralelă cu axa x și punctul în care linia tangentă este paralelă cu axa y?
Linia tangentă este paralelă cu axa x atunci când panta (deci dy / dx) este zero și este paralelă cu axa y atunci când panta (din nou, dy / dx) merge la oo sau -oo. dy / dx: x ^ 2 + xy + y ^ 2 = 7d / dx (x ^ 2 + xy + y ^ 2) = d / dx dy / dx = - (2x + y) / (x + 2y) Acum dy / dx = 0 atunci când nuimeratorul este 0, cu condiția ca acest lucru să nu facă și numitorul 0. 2x + y = 0 când y = Avem acum două ecuații: x ^ 2 + xy + y ^ 2 = 7 y = -2x Rezolvare (prin substituție) x ^ 2 + x (-2x) + (-2x) ^ 2 = ^ 2 + 4x ^ 2 = 7 3x ^ 2 = 7 x = + - sqrt (7/3) = + - sqrt21 / 3 Folosind y = -2x avem Tangenta la curba est
Scrieți o ecuație pentru linia care trece prin punctul dat care este paralelă cu linia dată? (6,7) x = -8
Vedeți un proces de soluție de mai jos: Ecuația x = -8 indică pentru fiecare valoare a y, x este egală cu -8. Aceasta, prin definiție, este o linie verticală. O linie paralelă cu aceasta va fi, de asemenea, o linie verticală. Și, pentru fiecare valoare a y, valoarea x va fi aceeași. Deoarece valoarea x din punctul problemei este de 6, ecuația liniei va fi: x = 6