Răspuns:
Explicaţie:
Va trebui să utilizați formula distanței. Aceasta afirmă că distanța dintre două puncte este
Pentru mai multe informații despre locul de proveniență, consultați acest site.
Putem conecta doar la această ecuație pentru a obține distanța.
=
=
=
=
=
Grigorie a tras un dreptunghi ABCD pe un plan de coordonate. Punctul A este la (0,0). Punctul B este la (9,0). Punctul C este la (9, -9). Punctul D este la (0, -9). Găsiți lungimea CD-ului lateral?
CD-ul lateral = 9 unități Dacă ignorăm coordonatele y (a doua valoare în fiecare punct), este ușor de constatat că, deoarece partea CD-ul pornește la x = 9 și se termină la x = 0, valoarea absolută este 9: | 0 - 9 | = 9 Amintiți-vă că soluțiile la valori absolute sunt întotdeauna pozitive Dacă nu înțelegeți de ce este, puteți folosi și formula de distanță: P_ "1" (9, -9) și P_ "2" (0, -9 ) În următoarea ecuație, P_ "1" este C și P_ "2" este D: sqrt ((x_ "2" -x_ "1") ^ 2+ (y_ "2" -y_ "1" (0 - 9) ^ 2 + (-9- (-9)) sqrt ((- 9) ^
Punctul A este la (-2, -8) iar punctul B este la (-5, 3). Punctul A este rotit (3pi) / 2 în sensul acelor de ceasornic cu privire la origine. Care sunt noile coordonate ale punctului A și cât de mult s-a schimbat distanța dintre punctele A și B?
Fie coordonata poarta initiala a lui A, (r, theta) dat coordonata cartela initiala a A, (x_1 = -2, y_1 = -8) Deci putem scrie (x_1 = -2 = rcosthetaandy_1 = -8 = rsintheta) 2 rotația în sensul acelor de ceasornic, noua coordonată a lui A devine x_2 = rcos (-3pi / 2 + theta) = rcos (3pi / 2-theta) = - rsintheta = - (8) = 8 y2 = rsin ) = - rsin (3pi / 2-theta) = rcostheta = -2 Distanța inițială A de la B (-5,3) d_1 = sqrt (3 ^ 2 + 11 ^ 2) 8, -2) și B (-5,3) d_2 = sqrt (13 ^ 2 + 5 ^ 2) = sqrt194 Deci Diferența = sqrt194-sqrt130 consultați și linkul http://socratic.org/questions/point-a -is-la-1-4 și-point-b-este-la-9-2-po
Punctele (-9, 2) și (-5, 6) reprezintă puncte finale ale diametrului unui cerc Care este lungimea diametrului? Care este punctul central al cercului? Având în vedere punctul C pe care l-ați găsit în partea (b), indicați punctul simetric față de C în jurul axei x
D = sqrt (32) = 4sqrt (2) ~~ 5.66 centru, C = (-7, 4) 9, 2), (-5, 6) Utilizați formula de distanță pentru a găsi lungimea diametrului: d = sqrt ((y_2 - y_1) ^ 2 + (x_2 - x_1) - sqrt (32) = sqrt (16) sqrt (2) = 4 sqrt (2) ~~ 5.66 Utilizați formula de mijloc pentru a găsiți centrul: ((x_1 + x_2) / 2, (y_1 + y_1) / 2): C = ((-9 + -5) / 2, (X, y) -> (x, -y): (-7, 4) punctul simetric în jurul axei x: ( -7, -4)