Răspuns:
Explicaţie:
Găsiți orthocenterul triunghiului cu vârfurile lui
Voi numi triunghiul
Orthocenterul este intersecția altitudinilor unui triunghi.
O altitudine este un segment de linie care trece printr-un vârf al unui triunghi și este perpendicular pe partea opusă.
Dacă găsiți intersecția a două dintre cele trei altitudini, acesta este ortocentrul, deoarece al treilea altitudine va intersecta și celelalte în acest punct.
Pentru a găsi intersecția a două altitudini, mai întâi trebuie să găsiți ecuațiile celor două linii care reprezintă altitudinile și apoi să le rezolvați într-un sistem de ecuații pentru a găsi intersecția lor.
Mai întâi vom găsi panta segmentului de linie între
Panta o linie perpendiculară pe acest segment de linie este semnul opus reciproc al lui
Folosind formula pantă punct
Pentru a găsi ecuația unei a doua altitudini, găsiți panta uneia dintre celelalte laturi ale triunghiului. Să alegem BC.
Panta perpendiculară este
Pentru a găsi ecuația altitudinii de la vârf
Sistemul de ecuații este
Rezolvarea acestui sistem duce la randamente
Care este ortocentrul unui triunghi cu colțuri la (1, 2), (5, 6) și (4, 6) #?
Orthocenterul triunghiului este: (1,9) Fie triangleABC triunghiul cu colțuri la A (1,2), B (5,6) și C (4,6) Let, bar (AL) și bara (CN) sunt altitudinile pe bara laterală (BC), bar (AC) și, respectiv, bară (AB). Fie (x, y) intersecția a trei altitudini. Înclinarea barei (AB) = (6-2) / (5-1) = 1 => înclinația barei (CN) = - 1 [:. altitudine] și bar (CN) trece prin C (4,6) Deci, equn. din bara (CN) este: y-6 = -1 (x-4) ) / (4-1) = 4/3 => înclinarea barei (BM) = - 3/4 [altitudinea: ) este: y-6 = -3 / 4 (x-5) => 4y-24 = -3x + 15 culoare ieșită (roșu) ) se obține, culoarea (roșu) (y = 10-x până la (3
Ce este ortocentrul unui triunghi cu colțuri la (1, 3), (5, 7) și (2, 3) #?
Ortocentrul triunghiului ABC este H (5,0) Fie triunghiul ABC cu colțuri la A (1,3), B (5,7) și C (2,3). astfel încât panta "liniei" (AB) = (7-3) / (5-1) = 4/4 = 1 Let, bar (CN) _ | _bar (AB):. Panta "liniei" CN = -1 / 1 = -1, și trece prin C (2,3). : Equn. (y-3 = -1 (x-2) => y-3 = -x + 2 ie x + y = 5 ... to (1) (BC) = (7-3) / (5-2) = 4/3 Let, bar (AM) _ | _bar (BC):. Panta "liniei" AM = -1 / (4/3) = - 3/4 și trece prin A (1,3). : Equn. din linia AM este: y-3 = -3 / 4 (x-1) => 4y-12 = -3x + 3 ie 3x + 4y = 15 ... to (2) CN și "line" AM este orthocenterul triangleABC. Aș
Care este ortocentrul unui triunghi cu colțuri la (1, 3), (6, 2) și (5, 4)?
(1, 3), B (6, 2) și C (5, 4) sunt vârfurile triunghiului ABC: Înclinarea unei linii prin puncte : (x_1, y_1), (x_2, y_2): m = (y_2-y_1) / (x_2-x_1) Înclinarea AB: = (2-3) / (6-1) line este 5. Ecuația altitudinii de la C la AB: y-y_1 = m (x-x_1) => m = 5, C (5,4): y-4 = 5 (x-5) 21 Înclinația BC: = (4-2) / (5-6) = - 2 Înclinarea liniei perpendiculare este 1/2. Ecuația altitudinii de la A la BC: y-3 = 1/2 (x-1) y = (1/2) x + 5/2 Intersecția altitudinilor egale cu y: 5x-21 = x + 5/2 10x-42 = x + 5 9x = 47 x = 47/9 y = 5 * 47 / 9- 21 y = 46/9 Astfel Orthocenterul este la (x, y) 46/9) Pentru a verific