Răspuns:
Explicaţie:
Lăsa
Orice patrat
Orice polinom în
Cum găsiți rădăcinile, reale și imaginare, de y = -3x ^ 2 - + 5x-2 folosind formula patratică?
X1 = 6 / (- 6) = - 1 x_2 = 4 / (- 6) = - 2/3 Formula quadratică precizează că dacă aveți un quadratic în forma ax ^ 2 + bx + c = 0, soluțiile sunt : x = (-b + -sqrt (b ^ 2-4ac)) / (2a) În acest caz, a = -3, b = -5 și c = -2. Putem conecta aceasta in formula patratica pentru a obtine: x = (- (- 5) + - sqrt ((- 5) ^ 2-4 * -3 * -2)) / (2 * -3) + -sqrt (25-24)) / (- 6) = (5 + -1) / (- 6) x_1 = 6 / (- 6) = - 1 x_2 = 4 /
Rădăcinile ecuației patratice 2x ^ 2-4x + 5 = 0 sunt alfa (a) și beta (b). (a) Aratati ca 2a ^ 3 = 3a-10 (b) gasiti ecuatia patratica cu radacinile 2a / b si 2b / a?
Vezi mai jos. Mai întâi găsiți rădăcinile de: 2x ^ 2-4x + 5 = 0 Folosind formula patratică: x = (- (- 4) + - sqrt ((- 4) ^ 2-4 (2) x = (4 + -sqrt (-24)) / 4 x = (4 + -2 izqrt (6)) / 4 = 2 = (2 + isqrt (6)) / 2 (3) = 2 (3) ) -10 2 ((2 + isqrt (6)) / 2) ^ 3 = (2 + isqrt (6)) (2 + isqrt (6) (2 + isqrt (6)) / 2) -10 = (6 + 3 izqrt (6)) / 8 culoare (albastru) (6)) / 2-10 = (6 + 3isqrt (6) -20) / 2color (albastru) = = (2-isqrt (6)) / 2 / isqrt (6)) 2 * b / a = ((2-isqrt (6)) / 2 (isqrt (6)) / 2) = (2-isqrt (6)) / (2 + isqrt (6) (6)) / (2 + isqrt (6))) (x-2 + isqrt (6)) / +4) unde bba este un multiplicator. Nu am inclus
Care declarație descrie cel mai bine ecuația (x + 5) 2 + 4 (x + 5) + 12 = 0? Ecuația este în formă patratică deoarece poate fi rescrisă ca o ecuație patratică cu u substituție u = (x + 5). Ecuația este în formă brută deoarece, atunci când este extinsă,
După cum este explicat mai sus, u-substituția îl va descrie ca fiind quadratic în u. În cazul lui quadratic în x, extinderea lui va avea cea mai mare putere a lui x ca 2, o va descrie cel mai bine ca fiind triunghiulară în x.