Răspuns:
Domeniu:
Gamă:
Explicaţie:
Domeniu:
deoarece este expresie radicală, astfel încât domeniul său este ceea ce este sub semnul radical mai mare sau egal cu 0, deoarece radicalul nu poate fi egal cu nimic mai mic decât 0
asa de
adăugați 2 la ambele părți:
Gamă:
Cum găsiți domeniul și intervalul de y = sqrt (2x + 7)?
Principala forță motrice aici este că nu putem lua rădăcina pătrată a unui număr negativ în sistemul de numere reale. Deci, trebuie să găsim cel mai mic număr pe care îl putem lua rădăcina pătrată a acestui număr încă în sistemul de numere reale, care, desigur, este zero. Așadar, trebuie să rezolvăm ecuația 2x + 7 = 0 Evident, acest lucru este x = -7/2 Deci, aceasta este cea mai mică valoare juridică x, care este limita inferioară a domeniului dvs. Nu există valoare maximă x, astfel încât limita superioară a domeniului dvs. este infinită pozitivă. Deci D = [- 7/2, + oo) Valoarea minimă pentru
Fie domeniul lui f (x) să fie [-2,3] și intervalul să fie [0,6]. Care este domeniul și domeniul f (-x)?
Domeniul este intervalul [-3, 2]. Intervalul este intervalul [0, 6]. Exact așa cum este, aceasta nu este o funcție, deoarece domeniul său este doar numărul -2.3, în timp ce intervalul său este un interval. Dar presupunând că aceasta este doar o tipografie, iar domeniul real este intervalul [-2, 3], acesta este după cum urmează: Fie g (x) = f (-x). Deoarece f cere ca variabila sa independentă să ia valori numai în intervalul [-2, 3], -x (negativul x) trebuie să fie în intervalul [-3, 2], care este domeniul lui g. Deoarece g își obține valoarea prin funcția f, intervalul său rămâne același, indi
Dacă f (x) = 3x ^ 2 și g (x) = (x-9) / (x + 1) și x1 = - 1, atunci ce ar fi f (g (x)) egal? g (f (x))? f ^ -1 (x)? Care ar fi domeniul, intervalul și zero-urile pentru f (x)? Care ar fi domeniul, intervalul și zero-urile pentru g (x)?
F (x) = 3 ((x-9) / (x + 1)) 2g (f (x)) = (3x ^ 2-9) (X) = r (x) = (x) = x (x) = x (x) 1}, R_g = {g (x) în RR; g (x)! = 1}