Răspuns:
R-squaredul ajustat se aplică numai pentru multiplu regresiune
Explicaţie:
Pe măsură ce adăugați mai multe variabile independente la o regresie multiplă, valoarea R-squared crește, oferindu-vă impresia că aveți un model mai bun, care nu este neapărat cazul. Fără a intra în profunzime, ajustat R-pătratul va lua în considerare această tendință de creștere a R-pătratului.
Dacă examinați orice multiplu rezultatele regresiei, veți observa că R-pătratul ajustat este întotdeauna mai mic decât R-pătrat, deoarece părtinirea a fost eliminată.
Scopul statisticianului este optimizarea celei mai bune combinații de variabile independente astfel încât valoarea R-squared ajustată să fie maximizată.
speranța că ajută
Lydia are 5 câini. 2 dintre câini mănâncă 2 kg (combinat) de alimente pe săptămână. Alți doi câini mănâncă 1 kg (combinat) pe săptămână. Al cincilea câine mănâncă 1 kg de alimente la fiecare trei săptămâni. Cât de mult alimente vor mânca câinii în totalitate în 9 săptămâni?
Iată răspunsul de mai jos. Să începem cu primii doi câini. Ei mănâncă 2 kg de alimente pe săptămână, deci pentru 9 săptămâni = "2 kg" xx 9 = "18 kg". Ceilalți doi câini mănâncă 1 kg de alimente pe săptămână, deci pentru 9 săptămâni = "1 kg" xx 9 = "9 kg". Al cincilea câine mănâncă 1 kg la fiecare 3 săptămâni, deci după 9 săptămâni = "1 kg" + "1 kg" + "1 kg" = "3 kg". Deci, consumul total de alimente = suma tuturor. Deci, alimentele totale consumate = "18 kg" + "9 kg
Atunci când un polinom este divizat de (x + 2), restul este -19. Atunci când același polinom este împărțit la (x-1), restul este 2, cum determinăm restul atunci când polinomul este împărțit prin (x + 2) (x-1)?
Știm că f (1) = 2 și f (-2) = - 19 din Teorema rămășiței Acum găsim restul polinomului f (x) atunci când este împărțit (x-1) (x + 2) forma Ax + B, deoarece este restul după împărțirea cu un patrat. Putem acum multiplica divizorul ori de la coeficientul Q ... f (x) = Q (x-1) (x + 2) + Ax + B Apoi, inserați 1 și -2 pentru x ... f (1) Q (1-1) (1 + 2) + A (1) + B = A + B = 2 f (-2) B = -2A + B = -19 Rezolvând aceste două ecuații, obținem A = 7 și B = -5 Remainder = Ax + B = 7x-5
Un ghepard se duce și o antilopă care se află la 700 de metri distanță. Câte minute va lua ghepardul, care rulează cu o viteză constantă de 110 km / h pentru a ajunge la antilopa care rulează cu o viteză constantă de 75 km / h?
1 min 12 sec Cheetahul trebuie să ajungă la antilope cu viteza relativă (115-75) = 35 km / h. Timp = distanță / viteză = 0,7 / 35 km / h = 1 / 50h = 1,2 min = 1min 2sec ..