Răspuns:
Explicaţie:
Folosind formula de panta:
Ar trebui să alegeți primul punct de coordonare
Asa de
Acum trebuie să puneți panta și unul din punctele date în formă de intersecție înclinată.
dacă
Introducerea punctului
Asa de,
Puteți verifica acest lucru utilizând celălalt punct și conectați-l
Da, deoarece această ecuație este adevărată,
Prin urmare, ecuația noastră este
Care este ecuația în forma pantă-punct și forma de intersecție a pantei liniei date pantei 3/5 care trece prin punctul (10, -2)?
(x_1, y_1) este forma de intersecție punct-pantă: y = mx + c 1) y - (- 2) = 3/5 ( x-10) = y + 2 = 3/5 (x) -6 5y-3x-40 = 0 2 y = mx + c -2 = 3/5 (10) + c = c => c = -8 (care poate fi observată și din ecuația precedentă) y = 3/5 (x) -8 => 5y-3x-40 = 0
Care este ecuația liniei în forma de intersecție a pantei care trece prin punctul (-2, 4) și este perpendiculară pe linia y = -2x + 4?
Y = 1 / 2x + 5 "dată unei linii cu panta m atunci panta unei linii perpendiculară pe ea este" • culoare (alb) (x) m_ (culoare roșie "perpendiculară") = "ecuația unei linii în" culoarea (albastră) "" panta-intercept "este. • culoarea (alb) (x) y = mx + b "unde m este panta și b interceptul y" y = -2x + 4 "este în această formă" rArrm = -2 "și" m_ ) "- 1 / (- 2) = 1/2 rArry = 1 / 2x + blarr" ecuația parțială "" pentru a găsi b substitute " -1 + brArrb = 4 + 1 = 5 rArry = 1 / 2x + 5larrcolor (roșu) "în formă
Care este forma de intersecție a pantei ecuației liniei care trece prin (2, 2) și este paralelă cu y = x + 4?
Y = x • "linii paralele au pante egale" y = x + 4 "este în" culoare (albastru) " b) interceptul y "y = x + 4rArrm = 1 rArry = x + blarr" ecuația parțială "" pentru a găsi b substitute "(2,2)" în ecuația parțială "2 = 2 + brArrb = 0 rArry = xlarrcolor roșu) "în formă de intersecție a pantei" Graficul {(yx-4) (yx) = 0 [-10, 10, -5, 5]}