Răspuns:
Ecuația parabolică în formă standard este
Explicaţie:
Focusul este la
între focus și directrix. Prin urmare, vârful este la
de parabola este
vârful, astfel încât parabola se deschide în sus și
sau
și directrix este
de parabola în formă standard este
Graficul {1/16 (x + 18) ^ 2 + 26 -160, 160, -80, 80}
Care este ecuația în forma standard a parabolei cu focalizare la (-10,8) și o direcție directă de y = 9?
Ecuația parabolei este (x + 10) ^ 2 = -2y + 17 = -2 (y-17/2) Orice punct (x, y) de pe parabola este echidistant față de focalizare F = ) și directrix y = 9 Prin urmare, sqrt ((x + 10) ^ 2 + (y-8) ^ 2) = y-9 (x + 10) (X + 10) ^ 2 + y ^ 2-16y + 64 = y ^ 2-18y + 81 (x + 10) ^ 2 = -2y + 17 = -2 {((x + 10) ^ 2 + 2y-17) (y-9) = 0 [-31,08, 20,25, -9,12, 16,54]}
Care este ecuația în forma standard a parabolei cu focalizare la (11, -5) și o direcție directă de y = -19?
Y = 1 / 28x ^ 2-11 / 14x-215/28> "pentru orice punct" (x, y) "parabola" ((x-11) ^ 2 + (y + 5) ^ 2) = | y + 19 | (y + 5) ^ 2 = (y + 19) ^ 2 rArrx ^ 2-22x + 121cancel (+ y ^ 2) + 10y + 25 = anulează (y ^ 2) + 38y + 361 rArr-28y = -x ^ 2 + 22x + 215 rArry = 1 / 28x ^ 2-11 / 14x-215/28
Care este ecuația în forma standard a parabolei cu focalizare la (-1,18) și o direcție directă de y = 19?
Y = -1 / 2x ^ 2-x Parabola este locusul unui punct, să zicem (x, y), care se mișcă astfel încât distanța sa de la un punct numit focalizare și dintr-o linie dată numită directrix este întotdeauna egală. Mai mult decât atât, forma standard a ecuației unei parabole este y = ax ^ 2 + bx + c Deoarece focalizarea este (-1,18), distanța (x, y) din ea este sqrt ((x + 1) ^ 2 + (y-18) ^ 2) și distanța (x, y) din directrix y = 19 este (y-19) (Y-19 + y-18) sau x (x + 1) ^ 2 = (y-19) 2 + 2x + 1 = -1 (2y-1) = - 2y + 1 sau 2y = -x ^ 2-2x sau y = -1 / 2x ^ 2-x Graficul {(2y + x ^ 2 + 2x) y-19) = 0 [-20, 20, -40,