Răspuns:
Explicaţie:
Fie ca intregii să fie
Deci, Potrivit Problemei,
Deci, sunt intregii
Răspuns:
Explicaţie:
# "permiteți un număr întreg" = n #
# "atunci un număr întreg consecutiv" = n + 1 #
# RArrn + n + 1 = 679 #
# RArr2n + 1 = 679 #
# "scade 1 de ambele părți" #
# RArr2n = 678 #
# "împărțiți ambele părți cu 2" #
# RArrn = 678/2 = 339 #
# RArrn + 1 = 339 + 1 = 340 #
# "cele 2 numere consecutive sunt" 339 "și" 340 #
Răspuns:
Explicaţie:
Fie n orice număr întreg, atunci următorul număr întreg consecutiv este 1 mai mare
Suma este 679
simplificarea:
Se scade 1 din ambele părți:
Împărțiți ambele părți cu 2:
Noi avem:
Numărul nostru este:
Produsul cu două numere întregi consecutive este 24. Găsiți cele două numere întregi. Răspundeți sub formă de puncte pereche, cu cel mai mic dintre cele două numere întregi. Răspuns?
Cele două numere consecutive, chiar întregi: (4,6) sau (-6, -4) Fie culoarea (roșu) (n și n-2 sunt cele două numere consecutive, n-2 este 24 ie n (n-2) = 24 => n ^ 2n-24 = 0 Acum, [(-6) + 4 = -2 și (-6) xx4 = (N-6) (n + 4) = 0: n-6 = 0 sau n (n-6) + 4 = 0 ... până la [n inZZ] => culoare (roșu) (n = 6 sau n = -4 (i) = 6-2 = culoare (roșu) (4) Deci, cele două numere consecutive, chiar întregi: (4,6) (ii)) culoare roșie n = = -4-2 = culoare (roșu) (- 6) Deci, cele două numere consecutive, chiar și: (- 6, -4)
Produsul a două numere întregi consecutive este de 29 de ori mai mic decât de 8 ori suma lor. Găsiți cele două numere întregi. Răspundeți sub forma de puncte pereche cu cea mai mică dintre cele două întregi?
(X, x + 2) = x (x + x + 2) - 29 (x, x) :. x ^ 2 + 2x = 8 (2x + 2) - 29:. x ^ 2 + 2x = 16x + 16-29:. x ^ 2 + 2x - 16x - 16 + 29 = 0:. x ^ 2 - 14x + 13 = 0:. x ^ 2-x-13x + 13 = 0:. x (x - 1) - 13 (x - 1) = 0:. (x - 13) (x - 1) = 0:. x = 13 sau 1 Acum, CASE I: x = 13:. x + 2 = 13 + 2 = 15:. Numerele sunt (13, 15). Cazul II: x = 1:. x + 2 = 1 + 2 = 3:. Numerele sunt (1, 3). De aici, deoarece aici se formează două cazuri; perechea de numere poate fi ambele (13, 15) sau (1, 3).
Suma a trei numere întregi consecutive este egală cu 9 mai puțin de 4 ori cel puțin dintre numerele întregi. Care sunt cele trei numere întregi?
12,13,14 Avem trei numere consecutive. Să le numim x, x + 1, x + 2. Suma lor, x + x + 1 + x + 2 = 3x + 3 este egală cu nouă mai puțin de patru ori cel mai mic dintre numerele întregi sau 4x-9 Și putem spune: 3x + 3 = 4x-9x = 12 Și deci cele trei numere întregi sunt: 12,13,14