În primul rând, în această întrebare, ar trebui să găsim "panta" sau altfel cunoscută sub denumirea de gradient. folosim formula.
așa că pentru această întrebare avem.
acum ne uităm la ecuația noastră pentru o linie dreaptă, care este.
acum avem o valoare pentru
pentru a face acest lucru, vom folosi
acum tot ce trebuie să facem este să introducem valoarea noastră
Un copil de înălțime de 2,4 ft este în picioare în fața mirro.his frate de înălțime 4,8 ft este în picioare în spatele him.the înălțimea minimă a oglinzii necesare, astfel încât copilul să poată vedea complet imaginea lui n imaginea fraților lui în oglindă este ?
Mărirea oglinzii plane este 1 deoarece înălțimea imaginii și înălțimea obiectului sunt aceleași. Aici considerăm că oglinda a fost inițial de 2,4 ft înălțime, astfel încât copilul a fost capabil să-și vadă imaginea completă, atunci oglinda trebuie să fie de 4,8 ft lungime, astfel încât copilul să poată privi în sus, unde poate vedea imaginea partea superioară a corpului fratelui său, vizibilă deasupra lui.
Care este rata de schimbare a lățimii (în ft / sec) atunci când înălțimea este de 10 picioare, dacă înălțimea scade în acel moment la viteza de 1 ft / sec. Un dreptunghi are atât o înălțime schimbătoare, cât și o lățime în schimbare , dar înălțimea și lățimea se modifică astfel încât suprafața dreptunghiului să fie întotdeauna de 60 de metri pătrați?
Rata de schimbare a lățimii cu timpul (dW) / (dt) = 0,6 "ft / s" (dW) / (dt) = (dw) / dh dx dt dt (DW) / (dh) / (dw) / (dh) xx-1 = - (dW) / (dh) Wxxh = 60 W = 60 / (dt) = - (60) / (h ^ 2)) = (60) / (h ^ 2) Deci atunci când h = 10 : rArr (dW) / (dt) = (60) / (10 ^ 2) = 0,6 "ft / s"
Care declarație descrie cel mai bine ecuația (x + 5) 2 + 4 (x + 5) + 12 = 0? Ecuația este în formă patratică deoarece poate fi rescrisă ca o ecuație patratică cu u substituție u = (x + 5). Ecuația este în formă brută deoarece, atunci când este extinsă,
După cum este explicat mai sus, u-substituția îl va descrie ca fiind quadratic în u. În cazul lui quadratic în x, extinderea lui va avea cea mai mare putere a lui x ca 2, o va descrie cel mai bine ca fiind triunghiulară în x.