Metoda comună este folosirea determinantului
Vectorul format din
(care este un director vector la linia noastră)
și acum imaginați-vă un punct
vectorul format de
de fapt, vor fi paralele și vor fi pe aceeași linie, pentru că aceștia împărtășesc același punct
De ce dacă
deoarece
și
calculează
Și voilà! Știi cum să o faci geometric;)
Care este ecuația liniei care trece prin (0, -1) și este perpendiculară pe linia care trece prin următoarele puncte: (8, -3), (1,0)?
7x-3y + 1 = 0 Înclinarea liniei care unește două puncte (x_1, y_1) și (x_2, y_2) este dată de (y_2-y_1) / (x_2-x_1) sau (y_1-y_2) / x_1-x_2 ) Deoarece punctele sunt (8, -3) și (1, 0), panta liniei care le unește va fi dată de (0 - (- 3)) / (1-8) sau (3) adică -3 / 7. Produsul de înclinare a două linii perpendiculare este întotdeauna -1. Prin urmare, panta perpendiculară la ea va fi 7/3 și, prin urmare, ecuația în formă de panta poate fi scrisă ca y = 7 / 3x + c Deoarece aceasta trece prin punctul (0, -1), punând aceste valori în ecuația de mai sus, obținem -1 = 7/3 * 0 + c sau c = 1 Prin urmar
Care este ecuația liniei care trece prin (0, -1) și este perpendiculară pe linia care trece prin următoarele puncte: (13,20), (16,1)?
Y = 3/19 * x-1 Panta liniei trece prin (13,20) și (16,1) este m_1 = (1-20) / (16-13) = - 19/3 perpendicularitatea între două linii este produsul pantelor lor egale cu -1: .m_1 * m_2 = -1 sau (-19/3) * m_2 = -1 sau m_2 = 3/19 Astfel linia care trece prin 0, -1 ) este y + 1 = 3/19 * (x-0) sau y = 3/19 * x-1 Graficul {3/19 * x-1 [
Care este ecuația liniei care trece prin (0, -1) și este perpendiculară pe linia care trece prin următoarele puncte: (-5,11), (10,6)?
Y = 3x-1 "ecuația unei linii drepte este dată de" y = mx + c "unde m = gradientul și" c = "interceptul y" "dorim gradientul liniei perpendiculare pe linia" "trece prin punctele date" (-5,11), (10,6) vom avea nevoie de m_1m_2 = -1 pentru linia dată m_1 = (Deltay) / (Deltax) = (y_2-y_1) / (x_2 -x_1): .m_1 = (11-6) / (- 5-10) = 5 / -15 = -5 / 15 = -1/3 "" m_1m_2 = -1 => 1/3xxm_2 = -1: .m_2 = 3 astfel încât eqn. devine y = 3x + c trece prin "" (0, -1) -1 = 0 + c => c = -1: .y = 3x-1