Cum integrați int dx / (x ^ 2 + 1) ^ 2 folosind substituții trig?

Cum integrați int dx / (x ^ 2 + 1) ^ 2 folosind substituții trig?
Anonim

Răspuns:

#int dx / (x ^ 2 + 1) ^ 2 = (1/2) (tan ^ -1 (x) + x /

Explicaţie:

#int dx / (x ^ 2 + 1) ^ 2 #

Utilizare # X = tan (a) #

# Dx = sec ^ 2 (a) da #

# intdx / (x ^ 2 + 1) ^ 2 = int (sec ^ 2 (a) da) / (1 + tan ^

Utilizați identitatea # 1 + tan ^ 2 (a) = sec ^ 2 (a) #

# intdx / (x ^ 2 + 1) ^ 2 = int (sec ^ 2 (a) da) / sec ^

# = int (da) / sec ^ 2 (a) #

# = int cos ^ 2 (a) da #

# = int ((1 + cos (2a)) / 2) da #

# = (1/2) (int (da) + int cos (2a) da) #

# = (1/2) (a + sin (2a) / 2) #

# = (1/2) (a + (2sin (a) cos (a)) / 2) #

# = (1/2) (a + păcat (a).cos (a)) #

noi stim aia # A = tan ^ -1 (x) #

#sin (a) = x / (sqrt (1 + x ^ 2) #

#cos (a) = x / (sqrt (1 + x ^ 2 #

#int dx / (x ^ 2 + 1) ^ 2 = (1/2) (tan ^ 1 (x) + sin (sin ^ cos ^ -1 (1 / (sqrt (1 + x ^ 2)))) #

(1 + x ^ 2)) 1 / sqrt (1 + x ^ 2)) #

# = (1/2) (tan ^ 1 (x) + x / (1 + x ^ 2)) #

Răspuns:

#int dx / (x ^ 2 + 1) ^ 2 = 1/2 (arctan (x) + x / (x ^ 2 + 1)

Explicaţie:

#int dx / (x ^ 2 + 1) ^ 2 # efectuarea substituției

# x = bronz (y) # si in consecinta

#dx = dy / (cos (y) ^ 2) #

noi avem

# int dx / (x ^ 2 + 1) ^ 2 echiv int dy / (cos (y) ^ 2 (1 / cos (y)

dar

(d) (sin (y) cos (y)) = cos (y) ^ 2-sin (y)

atunci

#int cos (y) ^ 2 dy = 1/2 (y + sin (y) cos (y)) #

În cele din urmă, amintesc #y = arctan (x) # noi avem

#int dx / (x ^ 2 + 1) ^ 2 = 1/2 (arctan (x) + x / (x ^ 2 + 1)