Răspuns:
Ecuația parabolei este
Explicaţie:
Focusul este la
între focus și directrix. Prin urmare, vârful este la
de vârf, astfel încât parabola orizontală se deschide spre stânga. Ecuația lui
parabola orizontală de deschidere stânga este
între focus și vârf este
ecuația parabolică orizontală este
sau
Graficul {(y + 5) ^ 2 = -16 (x + 1) -80, 80, -40, 40
Care este forma standard a ecuației parabolei cu o direcție directă la x = 5 și o concentrare la (11, -7)?
(h + p, k) Directia directa este (hp) = 2 * 12 * (x-8) Având în vedere concentrarea la (11, -7) -> h + p = 11 "și" k = -7 Directrix x = 5 -> hp = 5 h + p = 11 "" "" (eq.2) ul ("folosiți (eq.2) și rezolvă pentru h") "" h = 5 + p "(eq.3) ) pentru a găsi valoarea "p" (5 + p) + p = 11 5 + 2p = 11 2p = 6 p = 3 ul (" (yk) ^ 2 = 4 * p * (xh) "dă" (y - (- 7)) (X-8) (y + 7) ^ 2 = 12 * (x-8)
Care este forma standard a ecuației parabolei cu o direcție directă la x = -6 și o concentrare la (12, -5)?
(x, y) "la parabola" "distanța de la" (x, y) "la focalizare și directrix" "sunt egale cu" " "culoare (albastru)" formula de distanta "sqrt ((x-12) ^ 2 + (y + 5) ^ 2) = | x + 6 | (x-12) ^ 2 + (y + 5) ^ 2 = (x + 6) ^ 2 rArrcancel (x ^ 2) -24x + 144 + y ^ 2 + 10y + 25 = anulați (x ^ 2) + 12x + 36 rArry ^ 2 + 10y-36x + 133 = 0
Care este forma standard a ecuației parabolei cu o direcție directă la x = -5 și o concentrare la (-7, -5)?
Ecuația parabolei este (y + 5) ^ 2 = -4x-24 = -4 (x + 6) Orice punct (x, y) de pe parabola este echidistant față de directrix și focalizare. Prin urmare, x - (- 5) = sqrt ((x - (- 7)) ^ 2+ (y - (X + 7) ^ 2 + (y + 5) ^ 2 x ^ 2 + 10x + 25 (y + 5) ^ 2 = -4x-24 = -4 (x + 6) Ecuația parabolei este (y + 5) ^ 2 = (Y + 5) ^ (x + 6) grafice {((y + 5) ^ 2 + 4x + 24) (x + 5)) = 0 [-17,68, 4,83, -9,325, 1,925]}