Care este domeniul și domeniul f (x) = {x ^ 2 - 81} / {x ^ 2 - 4x}?

Care este domeniul și domeniul f (x) = {x ^ 2 - 81} / {x ^ 2 - 4x}?
Anonim

Răspuns:

# D_f = RR- {0,4} = (- oo, 0) uu (0,4) uu (4, + oo) #, Range = #f (D_f) = (- oo, (81-9sqrt65) / 8 uu (81 + 9sqrt65) / 8, + oo) #

Explicaţie:

#f (x) = (x ^ 2-81) / (x ^ 2-4x) #

Pentru ca această funcție să fie definită, avem nevoie # X ^ 2-4x! = 0 #

Noi avem # X ^ 2-4x = 0 # #<=># #X (x-4) = 0 # #<=># # (X = 0, x = 4) #

Asa de # D_f = RR- {0,4} = (- oo, 0) uu (0,4) uu (4, + oo) #

Pentru #X## # InD_f, #f (x) = (x ^ 2-81) / (x ^ 2-4x) # #=# # ((X-9) (x + 9)) / (x ^ 2-4x) #

#f (x) = 0 <=> (x = 9, x = -9) #

  • # (X ^ 2-81) / (x ^ 2-4x) = y # #<=># # X ^ 2-81 = y (x ^ 2-4x) #

# X ^ 2-81 ^ = yx 2-4xy #

  • adăugare #color (verde) (4yx) # în ambele părți,

# X ^ 2-81 + 4yx = yx ^ 2 #

  • prin scăderea #color (roșu) (yx ^ 2) # de ambele părți

# X ^ 2-81 + 4yx-yx ^ 2 = 0 # #<=>#

# X ^ 2 (1-y) + 4xy-81 = 0 #

Aceasta este ecuația patratică pentru #X# asa de

# A = 1-y #

# B = 4y #

# C = -81 #

Avem nevoie # D = b ^ 2-4 * a * c> = 0 # #<=>#

# 16y ^ 2-4 (1-y) * (- 81)> = 0 # #<=>#

# 16y ^ 2 + 324 (1-y)> = 0 # #<=>#

# 16y ^ 2-324y + 324> = 0 # #<=>#

# 4y ^ 2-81y + 81> = 0 #

#y_ (1,2) = (- b + -sqrt (b ^ 2-4ac)) / (2a) #

#=# # (81 + -sqrt (6561-1296)) / 8 #

#=# # (81 + -sqrt (5265)) / 8 #

#=# # (81 + -9sqrt65) / 8 #

# 4y ^ 2-81y + 81> = 0 # #<=># # (Y <= (81-9sqrt65) / 8 # sau #Y> = (81 + 9sqrt65) / 8) #

asa de, #f (x) <= (81-9sqrt65) / 8 # sau #f (x)> = (81 + 9sqrt65) / 8 #

Care înseamnă, #f (D_f) = (- oo, (81-9sqrt65) / 8 uu (81 + 9sqrt65) / 8, + oo) #