Răspuns:
Observați în imagine Am atras de fapt vectorul unității în direcția opusă, și anume:
Nu contează că depinde ce anume rotiți la ceea ce aplicați regulile drepte …
Explicaţie:
După cum vă puteți vedea vectorii - să le numim
Acest două vectori reprezintă un plan care văd cifra.
Vectorul format de produsul x = =
este un vector ortogonal. Vectorul unității este obținut prin normalizarea lui
Acum hai să submutăm și să calculam vectorul ortonormal
Care este vectorul unic care este ortogonal față de planul care conține (20j + 31k) și (32i-38j-12k)?
Vectorul unității este == 1 / 1507.8 <938.992, -640> Vectorul ortogonal la 2 vectros într-un plan este calculat cu determinantul | (vecj, veck), (d, e, f), (g, h, i) unde <d, e, f> și <g, h, i> sunt cele 2 vectori Aici avem veca = <0,20,31> și vecb = <32, -38, -12> Prin urmare | (vecj, veck), (0,20,31), (32, -38, -12) = Veci | (20,31), (-38, -12) -vecj | (0,31), (32, -12) + Veck | (0,20), (32, -38) | = vecc (20 * -12 + 38 * 31) -vecj (0 * -12-31 * 32) + veck (0 * -38-32 * 20) = <938,992, -640> produse <938,992, -640> <0,20,31> = 938 * 0 + 992 * 20-640 * 31 = 0 <938,99
Care este vectorul unic care este ortogonal față de planul care conține (29i-35j-17k) și (41j + 31k)?
Vectorul unității este = 1 / 1540.3 <-388, -899,1189> Vectorul perpendicular pe 2 vectori este calculat cu factorul determinant (produs încrucișat) | (vecj, veck), (d, e, f), (g, h, i) unde <d, e, f> și <g, h, i> sunt cele 2 vectori Aici avem veca = <29, -35, -17> și vecb = <0,41,31> Prin urmare, | (vecj, veck), (29, -35, -17), (0,41,31) = Veci | (-35, -17), (41,31) | -vecj | (29, -17), (0,31) | + Veck | (29, -35), (0,41) = vecc (29 * 31 + 17 * 0) + veck (29 * 41 + 35 * 0) = <- 388, -899,1189> = vecc dot produse <-388, -899,1189> <29, -35, -17> = - 388 * 29 + 899 * 35-17
Care este vectorul unic care este ortogonal față de planul care conține (29i-35j-17k) și (32i-38j-12k)?
Răspunsul este = 1 / 299.7 <-226, -196,18> Vectorul perpendiculatr la 2 vectori este calculat cu determinantul (produsul încrucișat) | (vecj, veck), (d, e, f), (g, h, i) unde <d, e, f> și <g, h, i> sunt cele 2 vectori Aici avem vca = <29, -35, -17> și vecb = <32, -38, -12> (vecj, veck), (29, -35, -17), (32, -38, -12) | = Veci | (-35, -17), (-38, -12) -vecj | (29, -17), (32, -12) + Veck | (29, -35), (32, -38) = vecc (35 * 12-17 * 38) -vecj (-29 * 12 + 17 * 32) + veck (-29 * 38 + 35 * 32) = <- 226, -196,18> 2 puncte produse <-226, -196,18> <29, -35, -17> = - 226 * 29 + 196