Răspuns:
Explicaţie:
Rețineți că:
#10^2 = 100#
#11^2 = 121#
Acesta este:
#(107-100)/(121-100) = 7/21 = 1/3#
Deci, putem interpola liniar între
#sqrt (107) ~~ 10 + 1/3 (11-10) = 10 + 1/3 = 31/3 ~~ 10,33 #
(La liniar interpolat în acest exemplu este aproximarea curbei parabolului graficului de
Primă
Pentru mai multă precizie, putem folosi:
(2a + b / (2a + …))) #sqrt (a ^ 2 + b) = a + b /
Punând
#b = 107- (31/3) ^ 2 = 963/9 - 961/9 = 2/9 #
Atunci:
#sqrt (107) = 31/3 + (2/9) / (62/3 + (2/9) / (62/3 + (2/9)
Deci, ca un prim pas de îmbunătățire:
#sqrt (107) ~~ 31/3 + (2/9) / (62/3) = 31/3 + 1/93 = 962/93 ~~ 10.3441 #
Dacă vrem mai multă precizie, folosiți mai mulți termeni:
#sqrt (107) ~~ 31/3 + (2/9) / (62/3 + (2/9) / (62/3)) = 31/3 + (2/9) 1/93) = 31/3 + (2/9) / (1923/93) = 31/3 + 62/5769 = 59675/5769 ~~ 10.34408043 #
Înălțimea lui Jack este de 2/3 din înălțimea lui Leslie. Înălțimea lui Leslie este de 3/4 din înălțimea lui Lindsay. Dacă Lindsay are o înălțime de 160 cm, găsiți înălțimea lui Jack și înălțimea lui Leslie?
Leslie's = 120cm și înălțimea lui Jack = 80cm Înălțimea lui Leslie = 3 / cancel4 ^ 1xxcancel160 ^ 40/1 = 120cm Înălțimea cricurilor = 2 / cancel3 ^ 1xxcancel120 ^ 40/1 = 80cm
Domeniul lui f (x) este setul tuturor valorilor reale cu excepția lui 7, iar domeniul lui g (x) este setul tuturor valorilor reale cu excepția lui -3. Care este domeniul lui (g * f) (x)?
Toate numerele reale cu excepția 7 și -3 când multiplicați două funcții, ce facem noi? luăm valoarea f (x) și înmulțim cu valoarea g (x), unde x trebuie să fie aceeași. Cu toate acestea, ambele funcții au restricții, 7 și -3, deci produsul celor două funcții trebuie să aibă restricții * ambele *. În mod obișnuit, atunci când au funcții pe funcții, dacă funcțiile anterioare (f (x) și g (x)) au restricții, ele sunt întotdeauna luate ca parte a noii restricții a noii funcții sau a funcționării lor. De asemenea, puteți vizualiza acest lucru făcând două funcții raționale cu valori limitate diferite
Ecuația și graficul unui polinom sunt arătate mai jos, graficul atinge valoarea maximă atunci când valoarea lui x este 3 care este valoarea y a acestui maxim y = -x ^ 2 + 6x-7?
Trebuie să evaluăm polinomul la maxim x = 3, pentru orice valoare de x, y = -x ^ 2 + 6x-7, înlocuind astfel x = 3 obținem: y = - (3 ^ 2) + 6 * 3 -7 = -9 + 18-7 = 18-16 = 2, deci valoarea y la maximul x = 3 este y = 2 Vă rugăm să rețineți că acest lucru nu demonstrează că x = 3 este maximul