Răspuns:
Ecuația parabolei este
Explicaţie:
Focusul este la
între focus și directrix. Prin urmare, vârful este la
sau la
Deci, ecuația parabolei este
vârful de la directrix este
sub vârful, astfel încât parabola se deschide în sus și
graf {0.5 (x-1) ^ 2 + 3.5 -20, 20, -10, 10} Ans
Care este ecuația în forma standard a parabolei cu focalizare la (-10,8) și o direcție directă de y = 9?
Ecuația parabolei este (x + 10) ^ 2 = -2y + 17 = -2 (y-17/2) Orice punct (x, y) de pe parabola este echidistant față de focalizare F = ) și directrix y = 9 Prin urmare, sqrt ((x + 10) ^ 2 + (y-8) ^ 2) = y-9 (x + 10) (X + 10) ^ 2 + y ^ 2-16y + 64 = y ^ 2-18y + 81 (x + 10) ^ 2 = -2y + 17 = -2 {((x + 10) ^ 2 + 2y-17) (y-9) = 0 [-31,08, 20,25, -9,12, 16,54]}
Care este ecuația în forma standard a parabolei cu focalizare la (11, -5) și o direcție directă de y = -19?
Y = 1 / 28x ^ 2-11 / 14x-215/28> "pentru orice punct" (x, y) "parabola" ((x-11) ^ 2 + (y + 5) ^ 2) = | y + 19 | (y + 5) ^ 2 = (y + 19) ^ 2 rArrx ^ 2-22x + 121cancel (+ y ^ 2) + 10y + 25 = anulează (y ^ 2) + 38y + 361 rArr-28y = -x ^ 2 + 22x + 215 rArry = 1 / 28x ^ 2-11 / 14x-215/28
Care este ecuația în forma standard a parabolei cu focalizare la (-1,18) și o direcție directă de y = 19?
Y = -1 / 2x ^ 2-x Parabola este locusul unui punct, să zicem (x, y), care se mișcă astfel încât distanța sa de la un punct numit focalizare și dintr-o linie dată numită directrix este întotdeauna egală. Mai mult decât atât, forma standard a ecuației unei parabole este y = ax ^ 2 + bx + c Deoarece focalizarea este (-1,18), distanța (x, y) din ea este sqrt ((x + 1) ^ 2 + (y-18) ^ 2) și distanța (x, y) din directrix y = 19 este (y-19) (Y-19 + y-18) sau x (x + 1) ^ 2 = (y-19) 2 + 2x + 1 = -1 (2y-1) = - 2y + 1 sau 2y = -x ^ 2-2x sau y = -1 / 2x ^ 2-x Graficul {(2y + x ^ 2 + 2x) y-19) = 0 [-20, 20, -40,